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 Ioan-Ioviţ Popescu’s 

 Geometrical Optics is essentially 

a book about light rays: about 

what can be seen in our 

universe. The name of the 

author is well-known to 

physicists all over the world. He 

is the scientist who predicted 

the Etheron in the year 1982. 

We have already published the 

book of that unique discovery: 

Ether and Etherons. A Possible 

Reappraisal of the Concept of 

Ether,  

http://editura.mttlc.ro/i

ovitz-etherons.html . 

What students have to 

know about the book we are 

publishing now is that it was 

 Optica geometrică de Ioan-Ioviţ 

Popescu se ocupă de buna 

aproximaţie a luminii sub forma de 

raze (traiectorii). Numele autorului 

le este cunoscut fizicienilor din 

lumea întreagă. Ioviţ este acela care 

a prezis existenţa Etheronului încă 

din anul 1982. Editura noastră a 

publicat nu demult cartea acelei 

descoperiri absolut unice: Ether and 

Etherons. A Possible Reappraisal of the 

Concept of Ether,  

http://editura.mttlc.ro/iovit

z-etherons.html . 

Studenţii facultăţii de fizică 

din Bucureşti ştiau în anul 1988—

aşa cum ştiam şi eu de la autorul 
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everything. It was meant to be 

published as such, in facsimile, 

and its cover was intentionally 

black. It was so much used by 

students at the library of the 

Romanian Faculty of Physics, 

that all the copies are almost 

illegible now...  

Very soon, we also mean 

to publish the original book as 

facsimile in Romanian. For the 

time being, we are offering 

students all over the world its 

English version, reminding 

them that Ioan-Ioviţ Popescu is 

the first physicist who brought 

to light and gave a name to the 

smallest particle in our 

universe: the Etheron. 

 

autor cu scopul de a fi publicată în 

facsimil: ea a fost rescrisă de la capăt 

la fiecare nouă corectură, şi au fost 

refăcute de nenumărate ori figurile, 

forumulele, tot ce era pe pagină. 

Cartea a fost atât de mult folosită 

încât exemplarele de la biblioteca 

facultăţii abia dacă se mai pot 

desluşi... Pentru noi, cei izolaţi în 

comunism, această carte sfida, 

odată cu tiparniţa, un întreg 1984 

devenit realitate. Coperta ei era, în 

mod semnificativ, neagră. 

Urmează să publicăm în 

curând şi volumul olograf în limba 

română. Oferim acum studenţilor 

din întreaga lume versiunea lui în 

limba engleză. Le reamintim cu 

această ocazie că, primul din lume, 

Ioan-Ioviţ Popescu a argumentat şi 

a calculat cea mai mică particulă din 

univers, numind-o Etheron. 
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PREFACE 

 
 The present volume comprises the first part of the two-semester Optics Course 

intended for use by the students of the Faculty of Physics of Bucharest University. In 

this volume we discuss geometrical optics, while the subsequent volumes are 

dedicated to wave optics and quantum optics. 

 Optics is one of the earliest sciences, having originated in antiquity, and many 

of the current concepts and representations of physics are linked to the effort towards 

understanding the essence of light-related phenomena. Although nowadays 

geometrical optics appears to be a limit case of Maxwell’s equations applied to the 

phenomena of propagation of electromagnetic fields of very short wavelenghts, the 

design of optical instruments is mainly based on the behaviour of light rays 

considered through these systems, since it rarely happens that diffraction bypasses 

geometrical aberrations. Also, the study of finer wave phenomena, such as 

interference, polarization, and diffraction, always requires preliminary observation of 

the geometrical path of light rays. 

 In Chapter I we introduce the principles of geometrical optics in considering 

the eikonal equation for wavefronts and the associated equation for light rays. 

Subsequently, we again take up these issues from a global perspective, and elaborate 

Fermat’s principle and Lagrangian formalism for light rays. These general laws will 

then allow us to construct the geometrical theory of optical images, based on the 

concept of stigmatism. 

 In Chapter II we deal with the important class of rotationally symmetrical 

dioptric systems.  In order to study the geometrical behaviour of paraxial rays, we 

introduce the transfer-matrix method, which we use in a detailed description of the 

main optical instruments. Subsequently we give an account of the aspects which limit 

the effectiveness of optical apparatuses, and discuss the methods of adjusting for 

chromatic and geometrical aberrations. 

 In Chapter III we give a study of phenomena and applications where the 

refractive index varies continuously. We describe the trajectory of rays in systems with 

planar, cylindrical and spherical symmetry, with application in integrated optical 

circuits and fiber optics. 

 We complete the present study of the methods of geometrical optics with an 

account of the relevant moments in the evolution of concepts pertaining to the field of 

optics. We give special attention to Snell and Descartes’s establishing the law of 

refraction, to Fermat enunciating the principle of least time, we discuss the historical 



 

Ioan Ioviţ Popescu 
Optics 

I. Geometrical Optics 

3 

 

context in which the telescope and microscope were invented, thus opening up the 

world of very long and very short distances. We conclude the historical overview in 

this volume with Fraunhofer making spectral observations for the first time, which 

marked the beginning of the way to elucidating the atomic structure and the nature of 

light. 

 

Măgurele, 

15th of March 1988 
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Chapter I 

THE PRINCIPLES OF GEOMETRICAL OPTICS 

 
 It is a well-known fact that, through his sense organs, man is permanently 

connected to the environment in which he lives and works. It is with their help that 

man obtains the entirety of his information regarding surrounding objects and 

phenomena. It has been estimated that about 90% of the information a human being 

receives and processes throughout his lifetime is gained visually. The transfer of 

visual information from "objects" (located close by, as is the case most times, or far 

away, as in the case of astronomical observations) to their "observers" takes place at 

ultrahigh speed, through certain radiations known as luminous radiations, or simply 

light. 

 Although throughout the ages the science of light, that is, optics, has been 

approached by great personalities of natural science, such as Huygens, Newton, 

Young, Fresnel, Maxwell, Einstein, Feynman, of philosophy, such as Descartes, 

Spinoza, and also of the arts, such as Leonardo da Vinci and Goethe, its evolution is 

not linear. Whereas up to the first decades of the 20th century there was a long, often 

circuitous period of factual and conceptual accumulations, the last few decades has 

seen optics becoming one of the most dynamic parts of physical science. 

 In this book concerning the fundamentals of optics, we approach the issues of 

geometrical optics, which is based on the simplest model of light propagation. As it 

is known, geometrical optics is that part of optics in which the propagation of light 

and its interaction with material media are studied using the concept of light ray, 

defined as a curve (and, particularly, a straight line) along which luminous energy is 

propagated. This concept appeared and was founded on a phenomenological basis. It 

began with the observation of shadows and penumbrae, as well as of the images 

formed in the camera obscura. 

 Light beams are considered to be made up of an infinite set of independent light 

rays, each ray being propagated in a straight line in homogenous media, and behaving 

according to the well-known laws of reflection and refraction at the point of separation 

between two different media. 

 Because of the important place modern optical technology occupies in 

designing, as well as in producing various types of components, instruments or 

machines, the optics of light beams, that is, geometrical optics, is and will always be a 

distinct branch of optics, irrespective of the level at which one approaches it. 



 

Ioan Ioviţ Popescu 
Optics 

I. Geometrical Optics 

5 

 

 Today, despite all its limitations, geometrical optics is believed to embody the 

specific features of a scientific theory, because it has a logical, unitary structure, given 

by its fundamental principle, Fermat’s principle, from which are derived all the laws 

and consequences subjected to experimental analysis. 

 Although light propagation may be treated in detail with the help of Maxwell’s 

equations and the corresponding equation of electromagnetic waves, many problems 

of a practical nature are much more easily solved using the concept of light ray and 

the laws of geometrical optics. As we will soon show, geometrical optics, or light ray 

optics, is an approximation of wave optics for 𝜆  wavelengths that are very small 

(theoretically, for 𝜆 → 0) compared to the dimensions of objects (obstacles) limiting 

the beams of light.  In this approximation, energy propagates along the rays of light, 

defined as the multitude of trajectories normal to the wavefronts. Wavefronts are 

defined as the loci of points of equal phase. 

 Note that any light ray, as the trajectory of a mathematical point in space, is 

only a geometrical abstraction, and is not physically observable. In fact, if we tried to 

isolate a single light ray using a diaphragm of variable diameter, we would see that 

beyond a certain limit, instead of thinning, the beam enlarges and becomes divergent. 

This deviation from the propagation of energy along the geometrical rays is due to 

light’s wavelike nature, and is caused by the diffraction of waves. Still, because of the 

𝜆 → 0 restriction, wave diffraction cannot be described within geometrical optics. 

 We begin this chapter by deducing the fundamental equation of geometrical 

optics (the eikonal equation) for wavefronts and the associated equation for light rays. 

 

 

 1.1 The Eikonal and the Light Ray Equations 

 

 Let us consider a transparent and isotropic optical medium and the scalar 

equation of waves, 

 

(1)     Δ𝐸 =
1

𝜈2 ∙
𝜕2𝐸

𝜕𝑡2 , 

 

where 𝐸(𝑟, 𝑡) represents any of the scalar components of the electromagnetic field, 

and 𝜈(𝑟) = 𝑐 𝑛(𝑟)⁄  is the speed of light in the point considered within the medium of 

refractive index 𝑛(𝑟). Note that equation (1) is valid only if the variations of 𝑛 and of 

his gradient along a wavelength are negligible, conditions which are ideally met 

within the limits of geometrical optics (𝜆 → 0). 
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 We will now only consider the propagation of monochromatic waves, that is, 

of waves temporally dependent according to the factor 𝑒𝑥𝑝(−𝑖𝜔𝑡) . In this case, 

𝜕2𝐸 𝜕𝑡2 = −𝜔2𝐸⁄ , and equation (1) becomes the equation for monochromatic waves 

(or Helmholtz’s equation), 

 

(2)     Δ𝐸 + 𝑘2𝐸 = 0, 

 
where 𝑘 = 𝜔 𝜈⁄ = 2𝜋 𝜆⁄ = 𝑘0𝑛 and 𝑘0 = 𝜔 𝑐⁄ = 2𝜋 𝜆0⁄  are the moduli of wave 𝑣𝑒𝑐𝑡𝑜𝑟s 

in a medium and in a vacuum, respectively, and 𝜆 = 𝜆0 𝑛⁄ . 

 The most important solutions to equation (2) in homogenous media (𝑛 = 𝑐𝑜𝑛𝑠𝑡.) 

are planar, cylindrical, and spherical waves. The more complicated waves can be 

represented as superpositions of these. Let us first consider monochromatic planar 

waves in complex representations, that is, solutions of the form 

 

(3)     𝐸(𝑟, 𝑡) = 𝐸0𝑒𝑖(�⃗⃗�∙𝑟−𝜔𝑡),   

 

where 𝐸0  is a constant, usually complex 

amplitude, �⃗⃗� = 𝑘𝜏 = 𝑘0𝑛𝜏 is the wave (or 

propagation) vector, and 𝜏  is the unit 

vector for the direction of wave 

propagation. Vectors 𝜏 and �⃗⃗� are constant 

and perpendicular to the wavefronts, 

which in this case are the planes given at 

any moment 𝑡  by the equation �⃗⃗� ∙ 𝑟 =

𝜔𝑡 + 𝑐𝑜𝑛𝑠𝑡. Fig. 1 illustrates the position 

at successive moments of the equiphase 

plane �⃗⃗� ∙ 𝑟 = 𝜔𝑡 and  the corresponding plane at zero radians 𝜏 ∙ 𝑟 = 𝜈𝑡. The light rays 

are rectilinear, along the direction 𝜏. 

 In non-homogenous media, the refractive index varies spatially, that is, 𝑛 =

𝑛(𝑟), and expression (3) no longer represents a solution to the wave equation. We will 

look for harmonic solutions of the more general form: 

 

(4)     𝐸(𝑟, 𝑡) = 𝐸0(𝑟)𝑒𝑖[𝑘0𝜙(𝑟)−𝜔𝑡], 

 
where the real scalar function 𝜙(𝑟), which represents the spatial phase component, is 
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called eikonal. The term was introduced by H. Bruns (1895), and comes from the 

Greek word εἰκών, which means image. The surfaces of constant phase are described 

at any given moment 𝑡 by the equation 𝑘0𝜙(𝑟) = 𝜔𝑡 + 𝑐𝑜𝑛𝑠𝑡., so that 𝑑𝜙 = 𝑐𝑑𝑡. Fig. 2 

illustrates the position at successive moments of the zero radian equiphase surface 

𝜙(𝑟) = 𝑐𝑡 and the associated orthogonal trajectories ∇ϕ of light rays, which in non-

homogenous media are usually curvilinear. As we will soon see, the difference 𝜙2 −

𝜙1 = 𝑐(𝑡2 − 𝑡1) is sinonymous to the optical path traversed by the light rays between 

the considered wavefronts, and is, of course, proportional to the corresponding phase 

difference 𝑘0(𝜙2−𝜙1). 

 Let us determine the equation for the eikonal function 𝜙 = 𝜙(𝑟)  with the 

requirement that expression (4) should be a solution to the wave equation. We have 

 

, 

 

  , 

 

so that, by making the relevant substitutions in wave equation (2), we get: 

 

(5)   , 

 

or, if we were to write the real and imaginary parts separately, 

 

(5′)    , 

 

(5′′)    . 

 

 Let us first analyze the consequences of equation (5′), which, within the limits 
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of geometrical optics 𝜆0 → 0, or 𝑘0 → ∞, becomes the non-homogenous first order and 

second order differential equation 

 

(6)      , 

 

which allows us to determine the function 𝜙(𝑟) if we know the 𝑛(𝑟) distribution of 

the refractive index and the boundary conditions. This is the eikonal equation, 

deduced for the first time by A. Sommerfeld and I. Runge (1911), and it represents the 

fundamental equation of geometrical optics, since the eikonal function 𝜙(𝑟) gives a 

complete description of the optical field with respect to wavefronts. 

 We can otherwise describe the optical field with reference to the light rays 

defined as a group of trajectories normal to the wavefronts (the justification for this 

definition will result from analysis of equation (5′′)). If we were to consider the 

trajectory of light rays in the parameter form 𝑟 = 𝑟(𝑠) , where the independent 

parameter 𝑠 is the trajectory arc length (Fig. 3), the unit vector that determines the 

direction of light rays at any point is 

 

(7)      , 

 

 

so that the eikonal equation can also take the following equivalent forms: 

 

(8)    or  , 

 

(9)       

 

(10)      , 

 

(11)      , 

 

where �⃗⃗� ≝ 𝑘0𝜏 is the local wave vector. 
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Note that the graphical integration of the eikonal equation, equation (8), is equivalent 

to Huygens’ step by step construction (Traité de la lumière, 1692) of wavefronts. 

Indeed, we have 

 

(12)      , 

 

so 𝑑𝑠 = 𝑐𝑑𝑡 𝑛(𝑟)⁄ = 𝜈(𝑟)𝑑𝑡. In other words, if we consider the points of a wavefront to 

be synchronous sources of secondary spherical waves, any neighboring wavefront is 

an envelope for them (Fig. 4). Of course, this construction applies along both directions 

of propagation (the property of the reversibility of light). 

 If we differentiate eikonal equation (9) with respect to the 𝑠 parameter of light 

trajectory, and take into account equation (8), we get 

 

    , 

 

 

which is the light ray equation 

 

(13)   , or   .  
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 In the special case of homogenous media, we have 

𝑛 = 𝑐𝑜𝑛𝑠𝑡. , ∇𝑛 = 0 , so that equation (13) becomes 

𝑑2𝑟 𝑑𝑠2⁄ = 0, and the ray trajectories are the lines given by 

𝑟(𝑠) = 𝑟0 + 𝜏0𝑠, where 𝑟0  and 𝜏0  are integration constants. 

Of course, this can also be deduced directly from eikonal 

equation (10), which becomes ∇×𝜏 = 0 , meaning 𝜏  is 

constant. In the general case of non-homogenous media, the 

direction of propagation 𝜏  changes continually along the 

ray of light according to the ray equation (13). Since 𝜏2 = 1, 

we have 𝜏 ∙ (𝑑𝜏 𝑑𝑠⁄ ) = 0 , meaning the unit vector 𝜏  of 

direction of propagation and the light ray curvature vector 

 

(14)     , 

 

are orthogonal (�⃗� is the main normal vector unit, and 𝜌 is the local curvature radius), 

Fig. 5. 

 The ray equation (13) can also be written as 

 

(15)    , 

 

 

a form in which it highlights the coplanarity of vectors ∇𝑛, 𝜏, �⃗� in the osculating plane 

(𝜏, �⃗�). By multiplying scalar equation (15) by �⃗�, we get the general expression of the 

light ray curvature 

 

(16)     , 

 

Since it is always true that 1 𝜌⁄ ≥ 0, we get �⃗� ∙ ∇𝑛 =

|∇𝑛| cos 𝜃 ≥ 0, cos 𝜃 ≥ 0, 𝜃 ≤
𝜋

2
. Thus, we obtain the 

general rule according to which the light ray always 

curves towards the medium of higher refractive 

index. Equality corresponds to the limit case of 

homogenous media ( ∇𝑛 = 0 ), where the 1 𝜌⁄  

curvature is null, that is, the light ray is rectilinear. 

 Let us analyze equation (5′′) in such a case. 

By referring to equation (9), we will rewrite it as 
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(17)     . 

 

After integration, we get 

 

(18)     , 

 

from which it may be deduced that the field amplitude 𝐸0(𝑠) in any point of a given 

ray depends on an initial value 𝐸0(0) on the same ray, on the distribution of the 

refractive index 𝑛(𝑠) along the ray, and on the laplacian of the optical path 𝜙(𝑠) −

𝜙(0) = ∫ 𝑛(𝑠)𝑑𝑠
𝑠

0
 (see Chapter 1.2). The equations of geometrical optics do not 

intercondition the field values on different rays, no matter how close together they 

may be, so that a light beam appears as an aggregate of independent rays (the principle 

of independent light rays). 

  Referring again to the eikonal equation ∇𝜙 = 𝑛𝜏, that is, ∇𝜙 = ∇ ∙ (∇𝜙) = ∇ ∙

(𝑛𝜏), equation (5′′) can be rewritten as 

 

(19)     , 

 

or 

 

(20)      , 

 

that is, as the continuity equation ∇ ∙ 𝑗 = 0  for stationary incompressible fluids of 

current density 𝑗~𝐸0
2𝑛𝜏~𝐸0

2�⃗⃗� . Vector 𝑗  is analogous to the Poynting 𝑆  vector of 

electromagnetic theory, and represents the density of the energy current in the optical 

field considered in geometrical optics. Out of these considerations results a 

fundamental concept of geometrical optics, namely that according to which luminous 

energy propagates along light rays through the tubes of current lines 𝑗. 

 Using the notation 𝜎 for the transverse section area of a narrow beam of light 

(narrow tube of current lines), as it is used regarding fluids, based on equation (20) we 

deduce that 𝐸0
2𝑛𝜎 = 𝑐𝑜𝑛𝑠𝑡. along the beam (tube). 

 After all these strictly theoretical considerations, we will illustrate how we can 

effectively obtain a beam of isolated light rays. Of course, the process entails the 

introduction of a diaphragm before a spatially extended light wave, of a form 

expressed in (4), with an arbitrary 𝑟. In order that the rays in the beam should meet 

the validity conditions of the eikonal equation (small 𝜆0 wavelength and an amplitude 
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𝐸0(𝑟)  with sufficiently slow variation in space, so that it satisfies the inequality 

|∆𝐸0 𝐸0𝑘0
2⁄ | = (𝜆0

2 4𝜋2⁄ ) ∙ |∆𝐸0 𝐸0⁄ | ≪ 𝑛2 ; for this purpose it is sufficient that 

|𝜆0𝜕𝐸0 𝜕𝑥⁄ | ≪ 𝐸0, etc.) this diaphragm must not be too narrow, and the resulting beam 

must not be too long. Indeed, along the edges of the diaphragm and on the lateral 

surface of the beam obtained with said diaphragm, the amplitude 𝐸0(𝑟)  varies 

significantly, and, because of this, the conditions specified above (within parentheses) 

are not met; as a consequence, the light diffracts, and so considerably widens the beam. 

The effects of diffraction are insignificant if the diaphragm is wide and if the light 

beam is short. In diffraction theory, it is demonstrated that the eikonal equation can 

still be used for distance 𝑠 ≪ 𝐷2 𝜆0⁄ ≡ 𝑠0 , where 𝐷  is the smallest width of the 

diaphragm. For example, for 𝜆0 = 500 𝑛𝑚 and a circular diaphragm of diameter 𝐷 =

1𝑚𝑚, we get 𝑠0 = 2𝑚; this means that, beyond the diaphragm, across a distance of 

several centimeters, the beam is still composed of independent light rays, to which 

equations (5′′) and (9) still apply. When 𝐷 → ∞, or 𝜆0 → 0, we have 𝑠0 → ∞, and the 

approximation of geometrical optics applies to any distances 𝑠 , however large. 

Unfortunately, this kind of situations are very rare in practice. That is why geometrical 

optics is only a "first approximation" of optics. 

 

 

 1.2 Fermat’s Principle and Lagrangian Formalism 

 

 The eikonal equation and the light ray equation describe the local behavior of 

wavefronts and ray trajectories, respectively. In many cases it is, however, convenient 

to consider the corresponding integral (global) properties. 

 Let us first consider Lagrange’s integral invariant theorem, according to which 

the integral of vector 𝑛𝜏, as well as that of wave vector �⃗⃗� = 𝑘0𝑛𝜏, between any two 

points 𝑃1, 𝑃2 of the optical field is independent of the path traveled, that is, 

 

(21)     , 

 

since, according to the eikonal equation (9), 𝑛𝜏 ∙ 𝑑𝑟 = ∇𝜙 ∙ 𝑑𝑟 = 𝑑𝜙. 

 Otherwise, if we integrate local equation (10) over any given surface Σ𝐶 with a 

closed boundary C, and apply Stokes’ theorem, we get the global law 

 

(22)     . 

 

 The integral theorem described above is also valid if the integrating contour 
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should intersect one or more surfaces of refractive index discontinuity. Obviously, 

these surfaces must be treated as relatively fast but continuous transition areas of the 

refractive index, across which the local eikonal equation retains its validity. As an 

application, let us consider such a separation surface intersected by a given closed 

boundary 𝐶 = 𝐶1 + 𝐶2 + 𝐶12, where boundaries 𝐶1 and 𝐶2are situated on either side of 

the separating surface Σ, and the infinitesimal boundary 𝐶12 effectively intersects this 

surface (Fig. 6). According to equation (22), we have 

 

(23)  . 

 

 But the integrals over the closed boundaries 𝐶1 and 𝐶2 are null, so that we can 

deduce the property 

 

(24′)     , 

 

or the equivalent 

 

(24′′)     , 

 

which applies to every point through which the light rays pass across the 

discontinuity surface Σ. Since the path component 𝑑𝑟2  in equations (24′) and (24′′) 

represents any infinitesimal portion traversed across surface Σ, these equations are 

equivalent to the continuity condition of the tangential components of vectors 𝑛𝑡 and 

�⃗⃗�, respectively. Because it measures the angle of incidence 𝜃1 and that of refraction 𝜃2 

to the surface normal at the point of ray incidence (Fig. 7), this condition is 

synonymous with the Snell-Descartes law of refraction 

 

(25)     . 

 

Let us now apply Lagrange’s integral invariant theorem, that is, equation (21), for the 

situation in which the integration contour is the trajectory of a light ray itself, so that 

𝑛𝜏 ∙ 𝑑𝑟 = 𝑛𝜏 ∙ 𝜏𝑑𝑠 = 𝑛 ∙ 𝑑𝑠. In this case, integral (21) between any two points 𝑃1, 𝑃2 on 

the ray, with the notation |𝑃1𝑃2| , is termed optical path, and has the following 

equivalent expressions: 

 

(26)   , 
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in which we’ve used the expression 𝑛 = 𝑘 𝑘0⁄ = 𝜆0 𝜆⁄  and the equation 𝑛𝑑𝑠 = 𝑐𝑑𝑡, that 

is, equation (12). In other words, the optical path between two points of a light ray is 

proportional to the number of wavelengths (since 𝑑𝑠 𝜆⁄ = 𝑑𝑁), the time of light travel, 

and the phase difference between harmonic oscillations of the optical field at the 

points considered, respectively. 

 The concept of optical path allows us to formulate the following general 

property, called the principle of equal optical paths (or the Malus-Dupin theorem), 

according to which, no matter the optical media and the discontinuity surfaces 

traversed, the optical path between any two given wavefronts is the same for all light 

rays. The validity of this assertion results from applying equation (26) to all the rays 

of the light beam considered, meaning (see Fig. 8) 

 

(27)    . 

 

 This principle automatically satisfies the Snell-Descartes law of refraction at the 

discontinuity surfaces. Let us consider a narrow beam of light rays bound between 

neighboring rays 𝑃1𝑃𝑃2  and 𝑄1𝑄𝑄2  passing through surface Σ , separating two 

homogenous media 𝑛1 and 𝑛2 (see Fig. 9). In virtue of the principle of equal optical 

paths, we have 

     , 

in other words, 

  . 

 

where, in construction, the underlined elements compensate each other. Since 𝑃′𝑃 =

𝑃𝑄 ∙ sin 𝜃1  and 𝑄𝑄′ = 𝑃𝑄 ∙ sin 𝜃2 , this last equation yields the law of refraction 

𝑛1 sin 𝜃1 = 𝑛2 sin 𝜃2, that is, equation (25). 
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 The principle of equal optical paths also 

justifies Huygens’ construction of successive 

wavefronts starting from one of them. Thus, as in 

the previous example, let us consider a separation 

surface Σ between two homogenous media 𝑛1 and 

𝑛2 (see Fig. 10). Based on the given wavefront 𝜙1 in 

the medium 𝑛1, we must construct geometrically 

wavefront 𝜙2  in medium 𝑛2 , which is separated 

from wavefront 𝜙1 by the optical path 𝜙2 − 𝜙1 = 𝑐𝑜𝑛𝑠𝑡. To this end, at the different 

points 𝑃1, 𝑄1, 𝑅1, ... of wavefront 𝜙1 we build the normals (light rays) that intersect 

separating surface Σ  in the corresponding points 𝑃 , 𝑄 , 𝑅 , ... . Then we draw the 

spheres 𝑆𝑃, 𝑆𝑄, 𝑆𝑅, ... with their centers in said points (𝑃, 𝑄, 𝑅, ...) and rays 𝑠2𝑝, 𝑠2𝑞,  

𝑠2𝑟, ... given by the condition of equal optical paths 

 

   . 

 

 Obviously, the envelope of these spheres represent the intended wavefront 𝜙2, 

and the tangent points 𝑃2, 𝑄2, 𝑅2, ... are at the same time the points of intersection 

between light rays 𝑃1𝑃𝑃2, 𝑄1𝑄𝑄2, 𝑅1𝑅𝑅2, ... and said wavefront. 

 Next we will see that the equations of 

geometrical optics may be deduced from a single 

variational principle (Fermat’s principle). Let us 

thus consider two trajectories (Fig. 11) passing 

through the same points 𝑃1, and 𝑃2, namely a real 

trajectory, effectively chosen by the light ray, and 

a neighboring virtual trajectory, which the light 

ray does not actually traverse. Obviously, there is 

an infinity of virtual trajectories neighboring a 

given real light ray. The variation of the optical 

path between the two considered trajectories is expressed as 

 

(28)     . 

 

Since the trajectories are close together, 

 

(29)      . 

 



 

Ioan Ioviţ Popescu 
Optics 

I. Geometrical Optics 

16 

 

 We also have the successive identities(𝑑𝑠)2 = (𝑑𝑟)2, 𝛿(𝑑𝑠)2 = 𝛿(𝑑𝑟)2, so 𝑑𝑠 ∙

𝛿(𝑑𝑠) = 𝑑𝑟 ∙ 𝛿(𝑑𝑟), or, considering that operators 𝑑 and 𝛿 are commutable, 

 

(30)   . 

 

By introducing expressions (29) and (30) into 

equation (28), we get 

 

(31)  . 

 

If we integrate by parts the second integral of the right component, we get 

 

(32)    , 

 

so that, in the end, equation (31) is written as 

 

(33)   . 

 

But points 𝑃1, 𝑃2 at the two ends are supposed to be fixed in position, that is, 𝛿𝑟1 =

𝛿𝑟2 = 0, and the variation 𝛿𝑟(𝑠) is arbitrary. It thus follows that the light ray equation 
𝑑

𝑑𝑠
(𝑛𝜏) = ∇𝑛 and, implicitly, the eikonal equation, are mathematically equivalent to 

the variational formulation 

 

(34)      . 

 

This yields Fermat’s principle (1657), according to which the real trajectory of a light 

ray that links any two given points 𝑷𝟏, 𝑷𝟐 is determined by the condition that the 

corresponding optical path should be stationary (extremal from the perspective of 

variational calculus), meaning 

 

(35)     stationary (extremal), 

 

where stationary (extremal) means minima, maxima, or constant. In other words, the 

real trajectory of the light ray represents an extremal trajectory of the optical path. 

Obviously, this trajectory remains the same no matter the direction of light 

propagation (the property of the reversibility of light rays). In homogenous media 

(𝑛 = constant), light propagates especially along the extremal geometrical path 
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(36)     , 

 

that is, in a straight line (minimum). 

 Note that, from a historical perspective, geometrical optics has developed as a 

theory of light rays, directly defined by Fermat’s principle, that is, by the principle of 

trajectories along which the optical path is stationary (extremal). The first success of 

Fermat’s principle was, of course, the deduction of the already known laws of 

reflection and refraction. Let us also deduce in this way the law of refraction across a 

surface Σ, separating two homogenous media 𝑛1, 𝑛2 (see Fig. 12). According to said 

principle, along the real trajectory connecting two given points 𝑃1, 𝑃2, we have 

 

(37)     stationary (extremal). 

 

Upon a virtual displacement 𝑑𝑠1 of the point of incidence of the light ray on surface Σ, 

it thus follows that 

 

(38)     . 

 

But 𝑠2 = 𝑠2, 𝑠𝛿𝑠 = 𝑠 ∙ 𝑑𝑠, 𝛿𝑠 =
𝑠

𝑠
𝑑𝑠 = 𝜏 ∙ 𝑑𝑠, and 𝑃1𝑃2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ = 𝑠1 + 𝑠2 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , meaning 

 

       

so that  

 

(39)   

 

Since the virtual displacement across the 

surface is arbitrary, equation (39) is equivalent 

to the condition of continuity of the tangential 

component of the vector, that is, to the Snell-

Descartes law of refraction. The law of 

reflection is similarly deduced if we consider 

the points located within the same medium. 

 The method of deducing natural laws 

from an integral variational principle, 

expressed for the first time through Fermat’s principle in geometrical optics, has 
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proven much more general, and has dominated the entirety of subsequent 

development of physical theories. For example, take Newton’s second law 

 

(40)      , 

 

through which classical mechanics describes the motion of a material point of mass 𝑚 

and speed �⃗� in a field of force �⃗� = −∇𝑈, determined by the potential energy 𝑈(𝑟). 

From the law of the conservation of energy 

 

(41)     , 

 

in which E is the total energy, through the gradient operation, we get 

 

(42)     , 

 

so that equation (40) can also be written 

 

(43)      . 

 

Taking into account the fact that 𝑑𝑠 = 𝑣𝑑𝑡, and introducing the unit vector 𝜏 =
�⃗⃗�

𝑣
 of the 

tangent to the trajectory, from equation (43) we get the equation of particle trajectory, 

written as 

 

(44)      . 

 

This equation is the analogue in classical mechanics of the light ray equation, equation 

(13), the refractive index 𝑛(𝑟) = 𝑐 𝑣(𝑟)⁄  being here replaced by the particle’s speed 

𝑣(𝑟) = [(2 𝑚⁄ ) ∙ (𝐸 − 𝑈(𝑟))]
1 2⁄

. Accordingly, the analogue of Fermat’s principle, 

equation (35), is written as 

 

(45)    stationary (extremal), 

 

and is known as the Maupertuis-Euler principle (1744). This is how the 

opto-mechanical analogy arose, between the matter of tracing light rays in a medium 

of refractive index 𝑛(𝑟) and that of determining the trajectories of particles in field of 

forces described by the function of potential energy 𝑈(𝑟). The foundations of this 



 

Ioan Ioviţ Popescu 
Optics 

I. Geometrical Optics 

19 

 

analogy were further strengthened by Hamilton, who applied variational calculus to 

the integral of the optical path in equation (35) in the field of geometrical optics 

(Theory of systems of rays, 1828 – 1837), as well as to the integral of "action" in 

equation (45) in the field of classical dynamics (On the application to dynamics of a 

general mathematical method previously applied to optics, 1834). 

 For its beauty and comprehensiveness, we will now present the Lagrangian 

and Hamiltonian formulation of geometrical optics. For convenience, we will reiterate 

the light ray trajectory in a Cartesian system of coordinates, going from the 

parametrical representation 𝑥(𝑠) , 𝑦(𝑠) , 𝑧(𝑠)  to the representation 𝑥(𝑧) , 𝑦(𝑧) , z, 

depending on the independent variable 𝑧 (Fig. 13). Thus, the length component of the 

trajectory is written as 

 

(46)   , 

 

where 

 

(47) 

 

 

 

and 

 

(48) 

 

 

 

 

are the components of unit vector 𝜏 =
𝑑𝑟

𝑑𝑠
 

(the direction cosines of the tangent to the 

trajectory). We will change the integration 

variable for the optical path from 𝑠  to 𝑧 , 

that is, 
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(49) 

 

 

 

 

where 

 

(50)  , 

 

is the optical Lagrangian. According to Fermat’s principle, the real light ray trajectory 

must satisfy equation (34), that is, 

 

(51)     . 

 

As is shown in variational calculus, the necessary conditions imposed by equation (51) 

are given by the Euler-Lagrange equations 

 

(52) 

 

 

 

These equations are actually the light ray equation, namely equation (13) 

 

      , 

 

or, split into components, 

 

(53) 

 

 

 

 

Indeed, by deriving the Lagrangian expression, namely equation (50), we get 

 

(54)    . 

 

 The first equation (52) is explicitly written as 
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  or  , 

 

meaning it is equation (53). Similarly, the second (52) equation is the second (53) 

equation. 

 Note that only the first two (53) equations are independent, while the third 

equation follows automatically from the other two and from the purely geometrical 

equation 

 

(55)     . 

 

Indeed, by multiplying equation (55) by 𝑑𝑛 𝑑𝑠⁄ , and by deriving it over 𝑠  and 

multiplying it by 𝑛, respectively, we get 

 

 

 

 

from which, through addition, we get 

 

(56)   . 

 

Obviously, the third (53) equation is an identity that brings nothing new beyond the 

first two. 

 From the Lagrangian formalism presented above, through equations (50) – (52), 

we can pass into Hamiltonian formalism by defining the canonical optical momenta: 

 

(57) 

 

 

 

and the optical Hamiltonian 

 

(58)   . 

 

By replacing the direction cosines with momenta, based on equations (57) and (55), 

we obtain the expression of the Hamiltonian dependent on the canonical conjugate 

variables (𝑥, 𝑝𝑥), (𝑦, 𝑝𝑦) and the independent variable 𝑧, in the form 
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(59)  . 

 

Note that, while the optical coordinates (𝑥, 𝑦) can have any value, the range of optical 

momenta (𝑝𝑥, 𝑝𝑦) is limited by the condition 

 

   . 

 

Correspondingly, we have |𝐻| ≤ 𝑛. 

 The total differential of the optical Hamiltonian (59) as a function of coordinates 

and momenta is 

 

(60)   . 

 

On the other hand, from the defining equation (58), it follows that 

 

(61)  , 

 

where the underlined terms compensate each other based on the definition of 

momenta itself, equation (57). Moreover, according to the Euler-Lagrange equations 

(52), we have 

 

(62)     , 

 

so that equation (61) is rewritten as 

 

(63)    . 

 

By identifying the two expressions (60), (63) of the total differential dH, we finally get 

the differential equations for the canonical variables, called canonical equations, or 

Hamilton’s equations 

 

(64) 

 

 

 

as well as 𝜕𝐻 𝜕𝑧⁄ = −𝜕𝐿 𝜕𝑧⁄ . Instead of two second order Euler-Lagrange equations, 
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we’ve thus obtained four first order Hamilton equations. By knowing the system’s 

Hamiltonian, equation (59), and by specifying the boundary conditions in a point 

𝑃0(𝑧0), integrating the (64) equations allows us to determine the state of the light ray 

in any other point 𝑃(𝑧), that is, its 𝑥, 𝑦 position and direction of propagation 𝑝𝑥 = 𝑛𝜏𝑥, 

𝑝𝑦 = 𝑛𝜏𝑦. When interpreting geometrically, it is convenient to consider the canonical 

variables in phase space (𝑥, 𝑦, 𝑝𝑥, 𝑝𝑦). 

 Using form (59) of the Hamiltonian, the reader can easily verify that the 

canonical equations (64) lead to definitions (57) and to the first two equations of set 

(53). This means that the entirety of Hamiltonian equations is absolutely equivalent to 

the Euler-Lagrange equations. 

 The study of luminous trajectories can equally be elaborated using the 

Hamilton-Jacobi method. By defining the optical action 𝑆(𝑥(𝑧), 𝑦(𝑧), 𝑧)  using the 

equation 

 

(65)    , 

 

known to us from analytical mechanics, in which 𝑃1  is a fixed point, and P is an 

arbitrary point along the real luminous trajectory, just as in analytical mechanics, we 

obtain 

 

(66)     . 

 

Since the Hamiltonian 𝐻  is a function of the canonical conjugate variables (𝑥, 𝑝𝑥), 

(𝑦, 𝑝𝑦), and of 𝑧, the first (66) equation becomes 

 

(67)     . 

 

We’ve thus obtained the Hamilton-Jacobi equation for optical action. Using the 

effective form (59) of the optical Hamiltonian, based on equation (67) we get 

 

(68)    , 

 

which can readily be written as 

 

(68′)    . 

 

By comparing equation (68′) to equation (6), we reach the conclusion that the eikonal 



 

Ioan Ioviţ Popescu 
Optics 

I. Geometrical Optics 

24 

 

is identical to the optical action, and the eikonal equation is in fact the Hamilton-Jacobi 

equation. Thus, the "circle" of opto-mechanical analogy is complete. 

 This allows us to affirm that between geometrical optics and analytical 

mechanics there is a perfect analogy. In quantum mechanics, the Hamilton-Jacobi 

equation (that is, the eikonal equation) is a limit case (for ℎ → 0, ℎ = Planck’s constant) 

of Schrödinger’s equation, fundamental to the entirety of nonrelativistic quantum 

mechanics. Therefore, analytical mechanics and optics may be considered, in the sense 

of the correspondence principle, to be particular cases of quantum mechanics. Light’s 

dual nature (wavelike and corpuscular-photonic) is thus integrated into the dual 

nature of quantum micro-objects. 

 

 

 1.3 General Conditions of Stigmatism 

 

 Let us consider a conical (homocentric) light beam emitted by a punctual source 

𝑃1 (Fig. 14.a). Usually, out of the infinity of rays within the beam, only one will pass 

through another point 𝑃2 , namely the extremal trajectory that satisfies Fermat’s 

principle. On the other hand, the ideal function of image forming optical systems is 

directing the light beam in such a way that every point 𝑃1 in the object space has a 

single corresponding point 𝑃2 within the image space. For this reason, we will now 

deal with those exceptional cases in which points 𝑃1 and 𝑃2 are linked by an infinity 

of rays (Fig. 14.b). 

 Stigmatism is the fundamental concept of the geometrical theory of optical 

images. The term comes from Greek στίγμα, which means point. An optical system is 

stigmatic, or punctual, for the pair of points 𝑃1, 𝑃2 if a conical light beam with its apex 

at 𝑃1 is transformed into a conical light beam with its apex at in 𝑃2. Point 𝑃2 is called 

the stigmatic image of point 𝑃1. Obviously, if we inverse the direction of the light rays, 

point 𝑃1 becomes the stigmatic image of point 𝑃2. The object and image points thus 

defined form a pair of stigmatic, or conjugate, points of the optical system considered. 

Depending on whether the light rays actually intersect or intersect through their 

extensions (rectilinear, in homogenous media), the object or image point is termed a 

real or a virtual point. 
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 Generally, irrespective of the 

complexity of the shape of the 

wavefronts, they are always spherical in 

the immediate vicinity of the conjugate 

points, into which they degenerate. By 

extending the principle of equal optical 

paths, we see that the optical path, the 

time of light propagation, the number of 

wavelengths and the phase difference 

between the two conjugate points 𝑃1, 𝑃2 are the same for all light rays A, B, C, ... that 

pass through these points (Fig. 14.b). The stigmatism condition for conjugate points 

𝑃1, 𝑃2 is written as 

 

(69)   constant 

 

and shows the only way in which light may propagate between two points by 

effectively and simultaneously taking multiple neighboring paths. Indeed, only in this 

way is the condition of stationary optical path between conjugate points, imposed by 

Fermat’s principle, equation (35), satisfied, for any light ray within the beam 

considered. The property of equal time of light propagation between conjugate points 

is termed tautochronism. 

 Perhaps the physical significance of the notion of image in geometrical optics 

most clearly emerges from the property of equal wavelength number, and from the 

property according to which the relative phase of the harmonic waves that propagate 

along the various rays is the same at the conjugate points. In order to illustrate how a 

perfect image is formed, in Fig. 15.a,b,c we have the reconstruction of spherical waves 

at a Cartesian surface of refraction (Cartesian oval), defined as the surface Σ 

separating two homogenous media 𝑛1 , 𝑛2 , whose points I satisfy the stigmatism 

condition (only) for a given pair of conjugate points 𝑃1, 𝑃2. Generally, the Cartesian 

oval is an aspheric bipolar surface, with rotational symmetry around the axis passing 

through the considered conjugate points. Therefore, when both conjugate points are 

real, that is, they are points through which the light rays effectively pass (Fig. 15.a), 

the Cartesian surface satisfies the equation  

 

(70)   = constant. 

 

 In other words, irrespective of the point of incidence I on the surface, the 
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conjugate points are separated by the same number of wavelengths (in Fig. 15, the 

number is 23). 

 The stigmatism condition (70) can be extended to the cases in which one or both 

conjugate points are virtual. For example, let us consider the case in which 𝑃1 is real 

and 𝑃2 is virtual (Fig. 15.b). The rectilinear extensions of light rays in medium 𝑛2 now 

pass through 𝑃2. According to the principle of equal optical paths, between the real 

point 𝑃1 and a given wavefront 𝜙2 in medium 𝑛2 we have 

 

 constant  

 

irrespective of the point of incidence I. Segment 𝑃2𝐽 is the ray of considered spherical 

surface 𝜙2, and is constant, so that we obtain the stigmatism condition (the equation 

for the Cartesian surface), written as 

 

(71)   constant. 

 

 

 

 

This time, unlike condition (70), irrespective of the position of the point of incidence I, 
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the conjugate points are separated by the same wavelength number difference 

between the real ray 𝑃1𝐼 and virtual ray 𝑃2𝐼 (in Fig. 15.b, 0 was chosen as the value of 

the constant in equation (71)). In a similar fashion, it can be demonstrated that the 

Cartesian surface equation in the situation in which point 𝑃1 is virtual and 𝑃2 is real 

takes the form 

 

(72)   constant. 

 

Note that in the cases described by equations (71) and (72), the conjugate points are 

located on the same side of the Cartesian surface. In the special case when the 

difference of optical paths between the real and virtual ray is null, the Cartesian 

surface degenerates into a spherical surface (see Fig. 15.b) and the corresponding 

conjugate points are termed Weierstrass points (or Young’s points). These points have 

significant practical importance, since, on the one hand, spherical surfaces are easiest 

to polish, and, on the other hand, Weierstrass points are not only stigmatic, but also 

aplanatic (see section 2.1). Finally, if both conjugate points are virtual (Fig. 15.c), by 

applying the principle of equal paths between a wavefront 𝜙1 in medium 𝑛1 and a 

wavefront 𝜙2 in medium 𝑛2, we get 

 

 constant, 

 

irrespective of the position of the point of incidence I. But curvature radii 𝐾𝑃1 and 𝑃2𝐽 

of spherical wavefronts 𝜙1 and 𝜙2, respectively, are constant, so we can write 

 

(73)   = constant. 

 

Therefore, just as in the case of real conjugate points, equation (70), virtual conjugate 

points are situated on either side of the Cartesian surface, and, irrespective of the 

position of the point of incidence I, they are separated by the same number of 

wavelengths (in Fig. 15.c, the number is 18). 

 Let us go over the results obtained in equations (70) – (73). We have: 

 

(74) 

 

 

 

where all segments are considered positive. In short, the conditions of rigorous 
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stigmatism, that is, equations (74), are written as 

 

(75) 

 

where the segments are considered from an algebraic perspective, meaning we accept 

the convention that the optical path is positive if traversed along the direction of 

propagation, and negative if traversed in the opposite direction. 

 In fact, we distinguish between two categories of situations, namely 

 

(76) 

 

where the plus sign pertains to the case in which the conjugate points are situated on 

different sides of the Cartesian surface, and the minus sign, to that in which they are 

located on the same side. 

 Note that, from a formal perspective, we can specialize the formulas presented 

above for reflection by simply replacing 𝑛2 with −𝑛1, so that equation (76) becomes 

 

(77) 

 

where this time the minus sign pertains to 

the case in which the conjugate points are 

located on either side of the mirror, and 

the plus sign, to the case in which they are 

located on the same side. Indeed, upon 

studying Fig. 16 we reach the conclusion 

that the Cartesian surfaces of reflection 

are either hyperboloids of revolution (Fig. 

16.b,c, with focal points 𝑃1  and 𝑃2 , one 

real, one virtual), or ellipsoids of 

revolution (Fig. 16.e,f, with focal points 𝑃1 

and 𝑃2, both real or both virtual). A special 

case of hyperbolic mirror is the plane 

mirror (Fig. 16.d, when the constant in 

equation (77) is null). Also, when one of 

the focal points moves to infinity, the 

elliptical mirror becomes parabolic (Fig. 

16.g,h). 
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 Generally, unlike the Cartesian surfaces of reflection of equation (77), which 

have conical sections, the Cartesian surfaces of refraction, equation (76), are much 

more complex. Thus, if we fix the conjugate points 𝑃1(𝑧1) and 𝑃2(𝑧2), and choose a 

system of Cartesian coordinates 𝑦𝑂𝑧, with the origin in vertex 𝑂 of surface Σ (Fig. 15.a), 

equation (76) becomes 

 

(78)  , 

 

where the plus sign pertains to the case in which points 𝑃1  and 𝑃2  are located on 

different sides of the origin 𝑂, that is, 𝑧1𝑧2 < 0, while the minus sign, to that in which 

they are situated on the same side, meaning 𝑧1𝑧2 > 0. If we eliminate the roots by 

squaring the equation twice and order the terms according to the decreasing 

exponents of values 𝑦 and 𝑧, we finally come to the Cartesian oval equation, written 

as 

 

(79) 

 

 

 

This equation represents the meridional section of a fourth order surface of revolution. 

For certain values of parameters 𝑛1, 𝑛2, 𝑧1, 𝑧2, the Cartesian oval degenerates into a 

second order surface. Thus, the third and fourth order terms eliminate each other if 

𝑛1
2 − 𝑛2

2 = 0, that is, if 𝑛2 = ±𝑛1. The situation 𝑛2 = 𝑛1 is trivial (adjacent media are 

identical), and the case in which 𝑛2 = −𝑛1 occurs in reflection, and has been discussed 

above. Moreover, if the following equation applies: 

 

(80) 

 

then equation (79) becomes 

 

 

 

meaning sphere  

 

(80) 
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with its center C at point 

 

(82)     , 

 

and a radius 𝑟 = |𝑧𝑐|. Using equation (82) as an expression for 𝑧𝑐, the position of the 

Weierstrass points, defined by equation (80), can also be written as 

 

 

 

 

(83) 

 

Note that Weierstrass points 𝑃1(𝑧1) , 𝑃2(𝑧2) , and the center of curvature 𝐶(𝑧𝑐)  are 

located on the same side of surface Σ, as can be seen in Fig. 15.b (for applications, see 

Chapter 2.1). 

 Finally, if one of the conjugate points is located at infinity (|𝑧1| → ∞ or |𝑧2| →

∞), then the Cartesian oval is an ellipsoid or hyperboloid of revolution. In order to 

demonstrate this, we note that the left member of equation (79) represents a second 

order polynomial in 𝑧1 (or 𝑧2), so that the oval equation can also be written as 

 

    . 

 

 If |𝑧1| → ∞, then the brackets in this 

last equation is eliminated, that is, 

 

(84) 

 

 

or, written in canonical form, 

 

 

(85) 

 

 

Equation (85), if 𝑛2 > 𝑛1 , represents an 

ellipsoid of revolution (Fig. 17.a,b), and if 



 

Ioan Ioviţ Popescu 
Optics 

I. Geometrical Optics 

31 

 

𝑛2 < 𝑛1, a hyperboloid of revolution (Fig. 17.c,d). We can reach the same result if we 

note that, when 𝑧1 → −∞, the stigmatism condition requires that the optical path 

between an incident wave plane (any such plane) and the image point 𝑃2 should be 

constant. For example, in the case of Fig. 17.a, we therefore have [𝐽𝐼𝑃2] = [𝑂𝑃2], that 

is, 

 

    , 

 

based on which, by isolating the root, squaring and ordering, we get equation (85). 

The same result also applies to the other situations presented in Fig. 17. 

 According to equation (85), the large semi-axis a, the small semi-axis b, the focal 

distance f, and the eccentricity 𝑒 = 𝑓 𝑎⁄  are expressed as 

 

(86)  , 

 

for the ellipsoid (𝑛2 > 𝑛1), and 

 

(87)  , 

 

for the hyperboloid (𝑛2 < 𝑛1). In both cases, the center C of the conical section is 

located at point 

 

(88) 

 

 Image 𝑃2  coincides with the right focal point (𝐹2) when 𝑧2 = 𝑧𝑐 + 𝑓(> 0), or 

with the left focal point (𝐹1) when 𝑧2 = 𝑧𝑐 − 𝑓(< 0). 

 In the case of reflection (𝑛2 = −𝑛1), equation (84) becomes 

 

(89)      , 

 

and represents a paraboloid of rotation, of parameter 𝑝 = 2𝑧2. If 𝑝 > 0, the image is 

virtual (Fig. 16.g), and if 𝑝 < 0, it is real (Fig. 16.h). 

 The Cartesian surfaces of reflection are important for building telescopes and 

projectors. Thus, the objective in reflection telescopes (Newton, Herschel, Gregory, 

Cassegrain) is a concave parabolic mirror, and the secondary mirror is elliptical and 

concave (Gregory), or hyperbolic and convex (Cassegrain), see section 2.5 (Fig. 61). 

 Moreover, the property of rigorous stigmatism of Cartesian surfaces of 



 

Ioan Ioviţ Popescu 
Optics 

I. Geometrical Optics 

32 

 

refraction is used in fashioning aspheric 

lenses. Generally, if we refer to Fig. 

15.a,b,c, an aspheric lens fashioned out of 

optical medium 𝑛2  is limited by the 

Cartesian surface Σ and by any spherical 

surface 𝜙2  with its center at 𝑃2 . In 

practice, Cartesian surfaces with conical 

section are used, as is illustrated in Fig. 

18 in the case of sphero-elliptic (a), plano-

hyperbolic (b), or double-hyperbolic (c) 

lenses. Because of the absence of 

spherical aberrations (see Chapter 2.8), aspheric lenses can have much larger aperture 

diameters 𝐷 and much smaller focal distances 𝑓 than spherical lenses. Consequently, 

we can achieve very small (up to 0.6 in practice) numbers 𝑓 ≝ 𝑓 𝐷⁄  (see Chapter 2.6) 

and a very large luminous flux density within the image plane. Therefore, aspheric 

lenses allow the most efficient usage of light sources and detectors, which accounts 

for their numerous applications in present-day optical systems for communications 

and control. Finally, let us note the use of the properties of Weierstrass points in 

fashioning stigmatic and aplanatic lenses, and microscope objectives of very high 

numerical aperture (see Chapter 2.1). 

 Unlike Cartesian surfaces and aspheric lenses, when stigmatism is achieved for 

a single pair of conjugate points, a perfect optical instrument (such as the Maxwellian 

distribution of the refractive index, called "fish-eye", see Chapter 3.3) achieves 

biunivocal and reciprocal correspondence between any object point 𝑃1  in three-

dimensional space and its image point 𝑃2 . Similarly, conjugate curves generate 

conjugate surfaces, and these, conjugate volumes. Thus, the notion of stigmatic image 

of extended spatial objects is introduced in geometrical optics. 

 Next, supposing stigmatism is achieved for a pair of points 𝑃1 , 𝑃2 , we will 

deduce the general condition so that it is 

maintained for any corresponding pair of 

neighboring points 𝑄1, 𝑄2 (Fig. 19). In order to do 

this, we will start from the definition of conjugate 

points, equation (69), according to which the 

optical path along any ray 𝑃1𝑃𝑃2  is equal to the 

constant [𝑃1𝑃2], and that along any ray 𝑄1𝑄𝑄2  is 

equal to the constant [𝑄1𝑄2] . The condition for 

preservation of stigmatism for pairs of 
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neighboring points is thus written as 

 

(90) 

 

 But the optical path, equation (26), is the difference in phase between harmonic 

oscillations in the points considered, that is, [𝑃1𝑃2] = 𝜙(𝑟2) − 𝜙(𝑟1). Because of the 

variation of paired conjugate points 𝑃1, 𝑃2, we thus obtain 

 

 

 

(91) 

 

where we’ve used the eikonal equation ∇𝜙 = 𝑛𝜏, that is, equation (9). The variations 

𝛿𝑟1 = 𝑃1𝑄1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  and 𝛿𝑟2 = 𝑃2𝑄2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  define a new pair of neighboring points 𝑄1, 𝑄2. If (𝑃1, 𝑃2) 

and (𝑄1, 𝑄2) are pairs of conjugate points, then from equations (90), (91) we obtain the 

general condition for stigmatism, or the cosine theorem 

 

(92) 

 

This equation links the elementary optical lengths 𝑛1 ∙ 𝛿𝑟1  and 𝑛2 ∙ 𝛿𝑟2  of the object 

and its stigmatic image to their orientation in the corresponding conjugate points 𝑃1, 

𝑃2 relative to any light ray 𝑃1𝑃𝑃2 that passes through them. 

 The fundamental stigmatism theorem (92) can also be demonstrated if we 

consider the 𝑄1𝑄𝑄2 rays as variations of the 𝑃1𝑃𝑃2 rays (Fig. 19), so that equation (90) 

becomes 

 

(93) 

 

 If we elaborate the variational calculus, as in the case of equation (28), in the 

end we obtain 

 

(94)   , 

 

where the integral is eliminated thanks to ray equation (13). 
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 The majority of image forming 

optical instruments have rotational 

symmetry. For this reason, we will now 

analyze the condition for stigmatism in 

the vicinity of a given arbitrary pair of 

conjugate points 𝑃1, 𝑃2, situated along the 

optical axis Oz of a rotating system. 

 Let us first consider the condition 

for transversal stigmatism (aplanatism) 

in the case of small objects and planar 

images, perpendicular to the optical axis (Fig. 20.a). This condition is most frequently 

imposed on optical instruments, and especially on microscope objectives and 

projection apparatuses. In this case, the general condition (92) assumes the special case 

form 

 

(95)  

 

 In order to determine the constant, we will use the light ray propagating along 

the optical axis (𝛾1 = 𝛾2 = 0) , so that in the end we obtain the condition for 

transversal (aplanatic) stigmatism, also called Abbe’s sine condition 

 

(96) 

 

 This equation must be satisfied for any ray 𝑃1𝑃𝑃2  passing through the 

conjugate points 𝑃1, 𝑃2, that is, for any pair of angles 𝛾1, 𝛾2. In the case of paraxial rays, 

that is, rays with small inclination 𝛾  relative to the optical axis, so that sin 𝛾 ≈ 𝛾 , 

condition (96) is reduced to the Lagrange-Helmholtz theorem 

 

(97) 

 

 An important requirement imposed on optical systems is that the image should 

be similar to the object (the property of orthoscopy). In these conditions, the 

transversal linear magnification 𝑚𝑡 ≝ 𝛿𝑟2 𝛿𝑟1⁄  of the system must be constant, and 

Abbe’s sine condition is written as 

 

(98) 
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 Let us next consider the condition for axial stigmatism in the case of small 

objects and linear images situated along the optical axis (Fig. 20.b). This condition is 

important in building instruments designed to form depth images or to act upon a 

moving point along the optical axis. In this case, the general condition (92) becomes 

 

(99)    , 

 

or, if determining the constant with the help of the axial ray (𝛾1 = 𝛾2 = 0), 

 

(100) 

 

 We have thus obtained the condition for axial stigmatism, or Herschel’s sine 

condition 

 

(101) 

 

 This equation must be satisfied for any ray 𝑃1𝑃𝑃2, that is, for any pair of angles 

𝛾1, 𝛾2. If we consider the axial linear magnification 𝑚𝑎 ≝ 𝛿𝑟2 𝛿𝑟1⁄  of the system to be 

constant, Herschel’s sines condition is written as 

 

(102) 

 

 Unfortunately, the Abbe (equation (98)) and Herschel (equation (102)), 

conditions are not compatible with high inclination, except in the special case in which 

|𝛾1| = |𝛾2| and |𝑚𝑡| = |𝑚𝑎| = 𝑛1 𝑛2⁄ . In conclusion, with the exception mentioned, it is 

impossible to build an axial optical instrument that can form the stigmatic image of 

an element with volume located on the optical axis through light beams of large 

spread. For this reason, when building optical instruments in practice, the condition 

that best meets the purpose is used. 

 Generally, the two conditions for stigmatism (98) and (102) can only be 

simultaneously satisfied if the image is formed using paraxial rays (sin 𝛾 ≈ 𝛾), so that  

 

(103) 

 

where 𝑚𝑎 ≝ 𝛾2 𝛾1⁄  represents angular magnification. For paraxial rays there are 

simple equations linking angular and linear magnification. Thus, the Abbe and 

Herschel conditions become 
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(104) 

 

and the equation linking the three parameters is written as 

 

(105) 

 

 To conclude this chapter, we will deduce a fundamental link between the 

brightness of a small planar, transverse object, of area 𝑑𝑆1, and that of its aplanatic 

image, of area 𝑑𝑆2 (Fig. 21). According to Abbe’s sine condition, equation (96), we 

have 

 

(106) 

 

 The energetic brightness of spatially 

extended light sources, in any given 

direction 𝛾 relative to the normal to their 

surface, is characterized by the radiance 

(brightness, luminance) 𝐿(𝛾) , defined as 

the flux of energy emitted into a solid angle unit by an apparent surface unit, that is, 

 

(107) 

 

In the international system, brightness is thus measured in Watt/steradian.𝑚2. The 

sources that satisfy Lambert’s law emit completely chaotic ("randomized") light, so 

that their radiance does not depend on 𝜆 (black body sources of perfectly diffusing 

sources). In order to retain general conditions, we will keep this dependency and use 

the equation for conjugate fluxes written as 

 

(108) 

 

where the transmission factor 𝑇(≤ 1) is determined by energy losses suffered within 

the system, caused by the reflection, absorption, and diffusion of light. If we introduce 

radiance, equation (107), and consider that 𝑑Ω = 2𝜋 sin 𝛾 𝑑𝛾 , we can also write 

equation (108) as 

 

(109) 
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On the other hand, if we differentiate equation (106), we have 

 

(110) 

 

Finally, from equations (109) and (110), we obtain the Clausius theorem 

 

(111) 

 

or, if we use the expression for radiance, equation (107), and equation (108), 

 

(112) 

 

 The parameter 𝑛2𝑑Ω𝑑𝑆 cos 𝛾 is called beam extension. The Clausius theorem 

(112) thus states that the beam extension is conserved. In other words, the larger the 

solid angle 𝑑Ω, the smaller the apparent surface 𝑑𝑆 cos 𝛾  (see Fig. 21). This law of 

conservation has numerous practical consequences in photometry. For example, in the 

best conditions (𝑇 = 1), from equation (111) we obtain 𝐿1 𝑛1
2⁄ = 𝐿2 𝑛2

2⁄ . In the special 

case in which 𝑛1 = 𝑛2 , it follows that radiance is conserved, 𝐿1 = 𝐿2 . In these 

conditions, not even the best focalization can increase the image’s brightness past the 

brightness of the object. In other words, the optical system does not allow energy to 

pass from an apparent temperature 𝑇1 to an apparent temperature 𝑇2 > 𝑇1. 
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Chapter II 

CENTERED OPTICAL SYSTEMS 

 
 The most important image forming optical systems and parts (lenses, mirrors), 

are the centered optical systems. These are a succession of homogenous, isotropic, and 

transparent optical media, limited by spherical surfaces with their vertex and center 

of curvature located on the same line. This is the system’s symmetry axis, and is 

termed principal optical axis. In practice, centered optical systems contain a large 

number of diopters, so that they partially compensate for chromatic aberrations (see 

Chapter 2.7), as well as geometric aberrations, which appear in the extra-paraxial field 

(see Chapter 2.8). Designing these systems entails ray tracing, by repeatedly applying 

the law of refraction or reflection at every separating surface and the rectilinear 

propagation across the homogenous media between these surfaces. This task, which 

is simple in principle, becomes formidable if high precision is required. That is why 

designing optical systems, from simple ray tracing, to correcting bothersome 

aberrations to meet the requirements of the intended application, is today done with 

the help of high-speed computers. Based on the parameters given in instructions, the 

computer can select the number of diopters, curvatures, refractive indices (types of 

optical glasses), thicknesses, apertures, and, last but not least, the weight and the price 

of the system. 

 

 2.1 Spherical Diopters 

 

 The easiest to fashion high-precision surface for lenses and mirrors is the 

spherical surface. This is why we will now study the conditions under which forming 

optical images is possible with the use of a spherical diopter, that is, a system of two 

homogenous, isotropic, and transparent media separated by a spherical surface. The 

spherical mirror can be treated in a similar fashion.* 

 For simplicity, we will study the paths of light rays in a meridional plane yOz, 

and orient the optical axis Oz in the general direction of propagation of the rays of 

incidence, from left to right. Let us thus consider a narrow light beam, bordered by 

the infinitely neighboring rays 𝑃1𝑃𝑃2
′′  and 𝑃1𝑄𝑃2

′′′  emitted by the object point 𝑃1 

                                                           
* Dioptrics (from Greek δια = through) is the optics of refringent systems, and catoptrics (from Greek 
κατα = by), the optics of reflectant systems.  
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situated on the optical axis; the corresponding refracted rays intersect each other in 

the extra-axial point 𝑃2
′, and the optical axis in points 𝑃2

′′ and 𝑃2
′′′ (see Fig. 22). 

  

 

 We will use the notation 𝑂𝐶 = 𝑟 for the diopter radius, and 𝑃1𝑃 = 𝑠1, 𝑃𝑃2
′ = 𝑠2

′ , 

𝑃𝑃2
′′ = 𝑠2

′′. If we differentiate the law of refraction 𝑛1 sin 𝜃1 = 𝑛2 sin 𝜃2 with respect to 

the circular arc OP⏜ = 𝑙, we get 

 

(113)     , 

 

or, seeing that 𝜃1 = 𝛼 + 𝛾1 and 𝜃2 = 𝛼 − 𝛾2, 

 

(114) 

  

 The parameters 𝑑𝛼 𝑑𝑙⁄ , 𝑑𝛾1 𝑑𝑙⁄ , 𝑑𝛾2 𝑑𝑙⁄  in the previous equation can be 

replaced with their expressions resulting from the equations 𝑑𝑙 = 𝑟𝑑𝛼 , 𝑠1𝑑𝛾1 =

𝑑𝑙 cos 𝜃1, 𝑠2
′ 𝑑𝛾2 = 𝑑𝑙 cos 𝜃2, so that, in the end, we obtain Young’s first equation 

 

(115)    , 

 

which determines the skew abscissa 𝑠2
′ . 

 Let us next consider the similar triangles 𝑃1𝐴𝐶 and 𝑃2
′′𝐵𝐶, obtained by drawing 

the perpendiculars on line 𝐶𝑃 from points 𝑃1 and 𝑃2
′′. We have 𝐴𝐶 𝐵𝐶⁄ = 𝑃1𝐴 𝑃2

′′𝐵⁄ , or 

 

(116)     , 

 

from which follows Young’s second equation 
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(117)     , 

 

which determines the skew abscissa 𝑠2
′′. 

 A similar analysis to that performed above for spherical diopters leads to 

Young’s equations for the spherical mirror (see Fig. 22.b) 

 

 

(118)     , 

 

(119)     . 

 

 Note that we can specialize the spherical diopter formulae (115), (117) for 

reflection, by simply making the formal replacements 𝜃2 = 𝜃1 and 𝑛2 = −𝑛1. 

 Young’s equations were deduced for the special case in which the object point 

𝑃1 is located on the left of the diopter (mirror) surface, while point 𝑃2 and the center 

of curvature 𝐶 are located on the right, as in Fig. 22.a. From here onwards, it will be 

convenient to adopt a rule for segment signs that will allow us to represent all possible 

cases using the same equations. From studying the various special cases, we can 

conclude that such a rule exists, and that it consists of attributing signs to the abscissas 

of points 𝑃1, 𝑃2, 𝐶, so that 𝑠1 > 0, 𝑠2 < 0, 𝑟 < 0 if these points are located to the left of 

the diopter (mirror) surface, and so that we have the opposite situation if they are 

located to its right. Based on this convention, in the case of diopters, points 𝑃1, 𝑃2 are 

real if 𝑠1, 𝑠2 > 0, and virtual if 𝑠1, 𝑠2 < 0, and in the case of mirrors, they are real if 

𝑠1 > 0, 𝑠2 < 0, and virtual if 𝑠1 < 0, 𝑠2 > 0. 

 The difference 𝛿 = 𝑠2
′′ − 𝑠2

′ , which describes the deviation from stigmatism, is 

called astigmatic distance. Usually, spherical diopters and mirrors aren’t rigorously 

stigmatic, meaning 𝛿 ≠ 0 (𝑠2
′ ≠ 𝑠2

′′). However, there indeed are exceptional cases of 

rigorous stigmatism, such is that of the Weierstrass points (Young points). In these 

cases, from equations (115), (117), and the condition for stigmatism 𝑠2
′ = 𝑠2

′′ = 𝑠2, it 

follows that 

 

(120)    , 

 

 

(121)    . 

 

 In this case, points 𝑃2
′, 𝑃2

′′, 𝑃2
′′′ are the same point 𝑃2, located on the optical axis. 
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As for the axial ray (𝜃1 = 𝜃2 = 0), the skew abscissas become regular abscissas 𝑠1 =

𝑃1𝑂 = 𝑝1, 𝑠2 = 𝑂𝑃2 = 𝑝2, where 

 

(122) 

 

 

 

determine the position of conjugate Weierstrass 

points. In Fig. 23 we have an illustration of a 

case in which 𝑛1 = 2 , 𝑛2 = 1 , and, therefore, 

𝑝1 = −3𝑟 2⁄ , 𝑝2 = 3𝑟 , where 𝑟 < 0 . From 

equation (122), it follows that 𝑟 > 0 implies that 

𝑝1 < 0 , 𝑝2 > 0 , and 𝑟 < 0  implies that 𝑝1 > 0 , 

𝑝2 < 0 , meaning the Weierstrass points are 

located on the same side as the center of 

curvature C. 

 Expressions (122) can also be written as 𝐶𝑃1 = (𝑛2 𝑛1⁄ )𝑟, 𝐶𝑃2 = (𝑛1 𝑛2⁄ )𝑟, from 

which it follows that 𝐶𝑃1 ∙ 𝐶𝑃2 = 𝑟2, meaning points 𝑃1, 𝑃2 are harmonically conjugate 

with points 𝑂, 𝑂′, 

in which the diopter surface intersects the optical axis. We can also write it as 

𝐶𝑃1 𝐶𝑃⁄ = 𝐶𝑃 𝐶𝑃2⁄ , meaning triangles 𝐶𝑃1𝑃 and 𝐶𝑃𝑃2 are similar, 𝛾1 = 𝜃2, and 𝛾2 = 𝜃1, 

therefore, 

 

  

 

 We’ve thus demonstrated that the Weierstrass points satisfy Abbe’s sine 

condition (equation (98)) 

 

     , 

 

with transversal linear magnification 𝑚𝑡 = (𝑛1 𝑛2⁄ )2. 
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 The aplanatism property of Weierstrass 

points is used in fashioning microscope 

objectives of high numerical aperture 𝑛1 sin 𝛾1. 

To this end, the cone of light collected from 

every object point 𝑃1  must be as wide as 

possible, as is illustrated in Fig. 24.a,b. Fig.24.a 

represents the Amici method, which uses 

convex-concave lenses in which object point 𝑃1 

is simultaneously located both at the center of 

spherical diopter 1′ and at the first Weierstrass 

point of diopter 1. The second Weierstrass 

point 𝑃2  of diopter 1 thus represents the 

aplanatic image of object point 𝑃1 in the first lens (1, 1′). Point 𝑃3 similarly represents 

the aplanatic image of point 𝑃2 in the second lens (2, 2′). Thus, satisfying the condition 

of rigorous aplanatism, the wide light beam with its apex at object point 𝑃1, with an 

aperture nearing the theoretical value 2𝛾1 = 𝜋, is transformed in a beam of paraxial 

rays, with its apex at point 𝑃3. The objective usually ends with an achromatic system 

(A), that corrects chromatic aberrations (see Chapter 2.7). Further increase of the 

numerical aperture 𝑛1 sin 𝛾1 is achieved by introducing between the object and frontal 

lens an immersion liquid of high refractive index 𝑛1, usually cedar oil (𝑛 = 1.515), 

which basically has the same refractive index as that of glass. In this way, losses due 

to reflection at the first surface of the frontal lens are also reduced. Fig. 24.b illustrates 

such an immersion objective. In this case, the first diopter 1′ no longer plays a role, so 

that the frontal lens can be a planar-convex lens. We’ve insisted on this issue because 

it represented an important moment in the evolution of image forming optical 

instruments. Within the scalar theory of light diffraction, it is demonstrated that the 

minimum distance (𝛿𝑟1)𝑚𝑖𝑛 between two points on the object that can still be resolved 

is limited by the phenomenon of diffraction. This minimum distance is given by the 

Abbe formula 

 

(123) 

   

 It follows that the spatial resolving power of microscope objectives, defined as 

1 (𝛿𝑟1)𝑚𝑖𝑛⁄ , can be increased by using radiation of smaller wavelength and attaining a 

higher numerical aperture 𝑛1 sin 𝛾1. 

 We’ve considered the exceptional case of rigorous stigmatism of Weierstrass 

points with wide beams. In the case of paraxial rays (sin 𝛾 ≈ 𝛾), as we’ve seen in 
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Chapter 1.3, the Abbe and Herschel conditions can always be approximately satisfied, 

which thus allows achieving an approximate stigmatism for all points on and around 

the optical axis. In the particular case of spherical diopters, the paraxial 

approximation* gives us 𝑠1 ≈ 𝑝1, 𝑠2
′ ≈ 𝑠2

′′ ≈ 𝑝2, cos 𝜃 ≈ 1, so that Young’s equations 

(115), (117) lead to a single equation, 

 

(124)     , 

 

which is the conjugate point relationship. The right-hand member of this equation 

depends only on the system parameters (𝑛1, 𝑛2, 𝑟). In the case of spherical mirrors 

(𝑛2 = −𝑛1), relation (124) becomes 

 

(125)      . 

 

 The conjugate point relationship (124) allows us to determine for any spherical 

diopter or mirror (𝑛2 = −𝑛1) with a convex (𝑟 > 0), concave (𝑟 < 0), or planar (𝑟 → ∞) 

surface the positions of conjugate points 𝑝1, 𝑝2 relative to the surface vertex 𝑂, as well 

as the real or virtual character of those points, using the rule adopted above for 

assigning plus or minus signs. 

 If in the conjugate point relationship (124) 𝑝2 → ∞, then 𝑝1 → 𝑓1, and if 𝑝1 → ∞, 

then 𝑝2 → 𝑓2, where 

 

 

(126) 

 

are termed focal distances (object and image, respectively). Obviously, it follows that 

 

(127) 

 

 The focal distances determine the corresponding focal points, or foci, 𝐹1, 𝐹2. 

These are real if 𝑓 > 0, or virtual if 𝑓 < 0. 

 The inverses of the focal distances, that is, 𝐶1 = 1 𝑓1⁄  and 𝐶2 = 1 𝑓2⁄ , are called 

convergences. The diopter is convergent or divergent according to whether its 

                                                           
* The first order paraxial approximation, or Gaussian paraxial approximation (named after Gauss, who 
first used it systematically in Dioptrische Untersuchungen, (1843)) is applicable when the light beam 
rays and the normals at the refringent surfaces form small (but otherwise arbitrary) angles 𝑥 with the 
optical axis, so that sin 𝑥 ≃ tan 𝑥 ≃ 𝑥, and cos 𝑥 ≃ 1, which practically means that 𝑥 ≤ 0.1 𝑟𝑎𝑑𝑖𝑎𝑛𝑠 ≃ 6°. 
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convergence is positive of negative. The usual unit of convergences is the diopter 

(𝑚−1). 

 An equivalent form of the conjugate point relationship (124) can be obtained 

by dividing with (𝑛2 − 𝑛1) 𝑟⁄  and introducing focal distances. We get 

 

(128)      , 

 

an equation known as the Huygens-Gauss formula. 

 Finally, we can obtain another form of the conjugate point relationship if we 

determine the positions of conjugate points 𝑃1, 𝑃2 using segments 𝜁1, 𝜁2, delimited by 

the corresponding focal points. By transforming the coordinates (see Fig. 25), 

 

(129) 

 

from the Huygens-Gauss formula (128), the following simple and symmetrical 

relation immediately follows: 

 

(13)      , 

 

an equation which is called the Newton formula. 

 The equations deduced above are also applicable for the spherical mirror (𝑛2 =

−𝑛1), so for focal distances 

 

(131) 

  

 In this case, foci 𝐹1, 𝐹2 are situated on the same side of the mirror surface and 

coincide in a common focal point, located at half the distance between the mirror 

vertex and the center of curvature. This single focus is real for concave, and virtual for 

convex mirrors. 

 Up to this point we’ve considered the relationship between conjugate points 𝑃1, 

𝑃2  situated along the principal optical axis (which passes through the center of 

curvature C and the vertex O of the spherical cap). Obviously, this relationship also 

exists between conjugate points 𝑄1, 𝑄2, located on any other secondary axis (which 

passes through C, but not through O), as is illustrated in Fig. 25. For this reason, the 

image of a circle arc of spherical cap 𝑃1𝑄1
⏜  is another arc or cap 𝑃2𝑄2

⏜ , both having their 

center located at C. However, in paraxial approximation, we only consider the object 

and image points in the vicinity of the principal optical axis, so that the arcs and caps 
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𝑃𝑄⏜  are confounded with the small transverse objects or images 𝛿𝑟, to which they are 

tangent in the corresponding points P. 

 The images are 

graphically constructed in a very 

convenient way, using rays of 

construction (principal rays), 

which pass through the foci and 

the center of curvature (Fig. 25). 

This construction is consistent 

with the conjugate point 

relationship. Thus, from the 

similarity between triangles 𝑃1𝑄1𝐹1 and 𝑂𝑅2𝐹1 or 𝑃2𝑄2𝐹2 and 𝑂𝑅1𝐹2, it follows that 

 

(132)     , 

 

where the last equality confirms the relation 𝜁1𝜁2 = 𝑓1𝑓2  (equation (130)). Another 

expression for the transversal linear magnification results from the similarity 

between triangles 𝑃1𝑄1𝐶  and 𝑃2𝑄2𝐶 , based on which we obtain the equation 

𝛿𝑟2 𝛿𝑟1 = − (𝑝2 − 𝑟) (𝑝1 + 𝑟)⁄⁄ , or, if we eliminate 𝑟 using equation (124) 

 

(133)  

 

 Note that the transversal magnification 𝑚𝑡 can be very high if 𝑝2is very large, 

that is, if 𝑃1 is near focus 𝐹1. 

 The conjugate point relationship (124) and expression (133) allow us to 

determine the position and size of image 𝑝2, 𝛿𝑟2, based on the position and size of 

object 𝑝1, 𝛿𝑟1, through the following equations: 

 

 

(134) 

 

 

 Successively applying these formulae for each diopter is a direct method of 

constructing images in centered optical systems in paraxial approximation. Thus, the 

image formed by the first surface acts as an object for the second surface, the image 

formed by the second surface acts as an object for the third, and so on. 

 The axial linear magnification results from differentiating the conjugate point 
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relationship (124), and is written as: 

 

(135)     . 

 

 Finally, if we consider an arbitrary paraxial ray 𝑃1𝑃𝑃2 extending between two 

conjugate points located on the principal optical axis (see Fig. 22), we have 𝑂𝑃⏜ =

𝑝1𝛾1 = −𝑝2𝛾2, from which we obtain the angular magnification 

 

(136)     . 

 

 By multiplying this equation by equation (133), we obtain our confirmation of 

the general relationship 𝑚1𝑚𝑢 = 𝑛1 𝑛2⁄  (equation (104)), and of the 

Lagrange-Helmholtz theorem 𝑛1𝛿𝑟1𝛾1 = 𝑛2𝛿𝑟2𝛾2  (equation 97). In fact, the three 

spherical diopter magnifications also serve to confirm the other general relationships, 

𝑚𝑎𝑚𝑢
2 = 𝑛1 𝑛2⁄  and 𝑚𝑎𝑚𝑢 = 𝑚𝑡 , applicable to any axial system in the paraxial 

approximation (also see Chapter 1.3). 

 

 2.2 The Transfer Matrix 

 

 Next, we will elaborate the paraxial analysis of centered optical systems. This 

issue has significant practical importance, since the images obtained through paraxial 

rays have no geometric aberrations, and the formulae deduced in this approximation 

are sufficiently precise for numerous applications. On the other hand, they constitute 

the foundation stone for more exact calculations, because deviations from the paraxial 

analysis formulae are a convenient measuring tool for appreciating the quality of real 

optical instruments. 

 As we’ve seen above, one direct method of achieving a paraxial analysis of 

centered optical systems involves successively applying the (134) relations separately 

for each diopter. Alternatively, because of the repetitive way in which this type of 

linear relations describing rectilinear propagation and refraction (or reflection) occur, 

any optical system may be associated with a transfer matrix, which is calculated as a 

simple product between fundamental translation and refraction (or reflection) 

matrices. The matrix method is a powerful instrument for calculating and designing 

optical systems, and, as we will soon see, it allows the demonstration of important 

theorems of paraxial geometric optics. 

 For convenience, we will now consider the meridional paraxial rays in plane 
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𝑦𝑂𝑧  with the Cartesian axes to be oriented according to the segment sign rule 

described in the spherical diopter chapter (see Chapter 2.1). We will thus retain the 

convention according to which axis 𝑂𝑧 is situated along the principal optical axis and 

is oriented in the general direction of propagation of the rays of incidence, considered 

to be from left to right, and the 𝑂𝑦 axis to be oriented from downwards upwards. We 

will also adopt the convention of measuring the inclination 𝛾 of light rays in radians 

relative to orientation of axis 𝑂𝑧 , and of assigning a sign to it according to 

trigonometric direction. 

 It will be convenient to define the state of the light ray in any one of its points 

using the 2×1 column matrix (the state vector) 

 

(137)   , 

 

where 𝑦 is the distance to the optical axis, 

and Γ = 𝑛𝛾 is the reduced inclination. 

 The rectilinear propagation, or 

translation, between planes 𝑧 = 𝑧1  and 𝑧 =

𝑧2  is described by the following equations 

(see Fig. 26): 

 

(138) 

  

 

 By introducing the translation 𝑡 = 𝑧2 − 𝑧1 , the reduced translation 𝑡 𝑛⁄ , the 

reduced inclinations Γ1 = 𝑛𝛾1 , Γ2 = 𝑛𝛾2 , and taking into account the paraxial 

approximation tan 𝛾 ≈ 𝛾, we can write the translation transformations (138) as 

 

(139)     , 

 

or, in a shorter form, 𝑉2 = 𝑇𝑉1, where the square 2×2 matrix 

 

(140)      , 

 

is the translation matrix. It contains all the information regarding the system 

traversed by the ray, that is, the optical medium of thickness 𝑡 and refractive index 𝑛. 

If the translation is null (𝑡 = 0), the translation matrix becomes the unit matrix, and 

𝛾2 = 𝛾1, Γ1 = Γ2. Note that the translation matrix is a unitary matrix, meaning det(𝑇) =
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1. 

 Let us next determine the matrix operator which represents refraction, that is, 

the linear relationship between state vector 𝑉2(𝑦2, 𝑛2𝛾2)  at the beginning of the 

refracted ray, and the state vector 𝑉1(𝑦1, 𝑛1𝛾1) at the end of the ray of incidence. The 

first relationship is simply 

 

(141)      . 

 

 The second linear relation follows from the law of refraction in paraxial 

approximation 𝑛1𝜃1 = 𝑛2𝜃2, that is, 𝑛1(𝛼 + 𝛾1) = 𝑛2(𝛼 + 𝛾2), or: 

 

(142)     , 

 

as can be seen in Fig. 27. From here we deduce the desired relationship 

 

(143)     . 

 

 Note that this equation is actually the conjugate point relationship for spherical 

diopters, that is, equation (124), since 𝛾1 = 𝑦1 𝑝1⁄  and 𝛾2 = − 𝑦1 𝑝2⁄ . The refraction 

transformations (141), (143) can be written as 

 

(144)     , 

 

or, in a shorter form, 𝑉2 = 𝑅𝑉1, where the 2×2 square matrix 

 

(145)    ,  , 

 

is the refraction matrix. The parameter 𝑄 , which contains all the information 

regarding the diopter, that is, 𝑛1, 𝑛2, 𝑟, is termed refraction power. If 𝑄 = 0 (if 𝑛1 = 𝑛2 

or 𝑟 → ∞), the refraction matrix becomes a unit matrix, so that 𝑦1 = 𝑦2, Γ1 = Γ2. Note 

that it’s unitary matrix, meaning det(𝑅) = 1. The relations of the spherical diopter are 

also applicable in the case of the spherical mirror (𝑛2 = −𝑛1), in which the parameter 

𝑄 = 2𝑛1 𝑟⁄  is, however, called reflection power. 

 Let us now consider the general case of a paraxial ray passing through a 

centered optical system formed out of 𝑚 spherical surfaces separated by 𝑚 − 1 media 

of different refractivity (Fig. 28). Such an axial dioptric system is considered to extend 

between the entrance plane, tangent to the first refractive surface Σ1 at its vertex, and 
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the exit plane, tangent to the last refractive surface Σ𝑚 at its vertex. As the light ray 

progresses along the system, we have 

 

 

 

 

 

    . 

 

 The last equation links the exit vector 𝑉𝑚
′′ to the entrance vector 𝑉1

′ through the 

transfer equation 

 

(146)   , 

 

where 

 

(147) 

 

is the transfer matrix of the system, 

considered to extend between the vertices (planes) of entrance and exit. Note that the 

matrix 𝑆  associated with the system is the product of individual refraction and 

translation matrices calculated in inverse order, meaning in an order opposite that in 

which light propagates throughout the system. Since the refraction and translation 

matrices are 2×2 square unitary matrices, it follows that the product matrix is of the 

same type, that is, its form is 

 

(148)     , 

 

where 

 

(149)     . 

 

 The elements of matrix 𝑆  contain all the information regarding the optical 

system’s parameters, namely the refractive indices, the curvature radii, and the 

thicknesses of the diopter components. Due to relation (149), it follows that only three 

of the four elements of matrix 𝑆 are independent, and, as we will see in the following 

chapters, they determine all the properties of the system as an image-forming 
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instrument. Property (149) is an important tool for verifying the correctness of 

calculations, during the calculating process and at its end. Thus, as we calculate the 

product of a long series of matrices, it is advisable to check, now and then, if the 

determinant of the product matrix is equal to unity. If it is not, it means an error has 

occurred in calculations. 

 Due to the associative property, when effectively calculating matrix 𝑆, there are 

multiple methods of obtaining the product. The most convenient is to first associate 

the matrices in pairs. But, since in a general case we have alternative product 

sequences 𝑅𝑇 , our calculations must follow the inverse order discussed above, 

because, as can readily be verified, the product 𝑅𝑇 is not commutative, that is, 𝑅𝑇 ≠

𝑇𝑅. Only in the special cases of successive translation through parallel refractive plane 

layers, or of successive refraction through attached diopters (thin lenses), the 

corresponding products are commutative, and so we have 

 

(150)     , 

 

and, respectively, 

 

(151)     . 

 

 Of course, changing the order of the component refractive elements affects the 

trajectory of the ray within the system, but 

not matrix 𝑆 , so that the relationship 

between the exit and entrance vectors 

remains unchanged. 

 To illustrate, let us calculate the 

transfer matrix for a biconvex glass lens 

(𝑛2 = 1.5), with curvature radii 𝑟1 = +2𝑐𝑚 

and 𝑟2 = −1𝑐𝑚 , of thickness 𝑔 = 0.5 𝑐𝑚 , 

immersed in air 𝑛1 = 𝑛3 = 1 (Fig. 29.a).  

 

   , 

 

where 𝑄1 = (𝑛1 − 𝑛2) 𝑟1⁄ , 𝑄2 = (𝑛2 − 𝑛3) 𝑟2⁄ . If we introduce the numerical data and 

calculate the matrix product, we obtain 
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(152)    . 

 

Obviously, det(𝑆) = 1. 

 The method is similar for optical systems, no matter how complex. For example, 

let us consider a Tessar system (Fig. 29.b), whose data is listed in the following table: 

 

 

 

 

 

 

 

 

 

 

 This system is free of geometric (astigmatism and field curvature) and 

chromatic aberrations, and many modern photographic objectives are variants. In this 

case, matrix 𝑆 is given by the product of 13 fundamental matrices, namely 

 

 

 

 The calculations themselves, easily done with the help of a Fortran program, 

lead to the results 

 

(153)     . 

 

 Obviously, we have det(𝑆) = 1. 

 

 2.3 Cardinal Elements 

 

 In order to analyze the image forming properties, it will be convenient to 

consider the relationship between two ray state vectors, 𝑉1  and 𝑉2 , located within 
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arbitrary reference planes, 𝑧 = 𝑧1  and 𝑧 = 𝑧2 , 

respectively, usually different from the planes 

tangent at the entrance and exit vertices of the 

optical system (see Fig. 30). The transfer 

equation (146) readily generalizes in the form 

 

(154)   , 

 

where the transfer matrix between the planes considered is 

 

(155)   , 

 

and has the elements 

 

(156)     , 

 

(157)     , 

 

(158)      , 

 

(159)    , 

 

with the property that 

 

(160)     . 

 

Note the invariance of element 𝑆21  with respect to the translation of the reference 

planes. 

 The transfer equation (154) represents the linear transformations 

 

(161)     , 

 

(162)     . 

 

 According to property (160), two elements of matrix 𝑀 at most can be null. Let 

us analyze the significance of the successive elimination of these elements. When a 

diagonal element is eliminated, equations (160), (161), (162) become, respectively, 
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  (if 𝑀11 = 0), 

       (if 𝑀22 = 0), 

 

from where it follows that 

 

(163)    (if 𝑀22 = 0), 

 

(164)    (if 𝑀11 = 0). 

 

As we will see later (see equations (182), (183)), the parameters 

 

(165) 

 

 

whose values only depend on the element 𝑆21 

of the optical system, are the object and image 

focal distances, respectively. The geometric 

interpretation of equations (163), (164) can be 

seen in Fig. 31. It consists of a homocentric 

beam, transformed into a parallel beam (Fig. 

31.a), or a parallel beam transformed into one 

homocentric (Fig. 31.b). The position of the 

focal planes (object and image) results from 

the corresponding conditions, 𝑀22 = 0  and 

𝑀11 = 0 , for which we use the expressions 

(156) and (157), namely 

 

(166) 

 

The intersections between the focal planes and optical axis determine the object (𝐹1) 

and image (𝐹2) focal points, or foci. 

 Let us next analyze the implications of eliminating element 21, that is, 𝑀21 =

𝑆21 = 0 , so that the focal planes (equations (166)) move to infinity, and the focal 

distances (equations (165)) become infinite. The optical systems which have this 

property are termed afocal, or telescopic, systems. In this case, equations (156), (157) 

become 𝑀11 = 𝑆11 , 𝑀22 = 𝑆22 , and property (160) is written as det 𝑀 = 𝑀11𝑀22 =
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𝑆11𝑆22 = 1. Moreover, from equation (162) it follows that Γ2 = 𝑆22Γ1, meaning that 

 

(167)      . 

 

This relation expresses the property of afocal optical systems of transforming a 

parallel beam of inclination 𝛾1 into a parallel beam of inclination 𝛾2 (Fig. 32). 

 The most important parameter describing afocal systems is the angular 

magnification. As can be deduced from equation (167), we have 

 

(168)    . 

 

Note that, unlike any other optical system, in 

the case of telescopic systems, the angular 

magnification is the same for all light rays.

 Finally, let us analyze the significance 

of condition 𝑀12 = 0 . In this case, equation 

(160) becomes det 𝑀 = 𝑀11𝑀22 = 1 , and 

equation (161) is written as 

 

(169)     . 

 

 This means that, no matter the inclination Γ1, a conical beam with its apex in 

plane 𝑧 = 𝑧1 is transformed into a conical 

beam with its apex in plane 𝑧 = 𝑧2  (see 

Fig. 33). In other words, the 𝑀12 = 0 

condition is the stigmatism condition (in 

paraxial approximation). Referring to 

expression (159) of element 𝑀12, we obtain 

the general form of the conjugate planes 

relationship 

 

(170)    . 

 

The conjugate planes intersect the optical axis in the conjugate object (𝑃1) and image 

(𝑃2) points. 

 Note that if 𝑡2 → ∞, then 𝑡1 → 𝑡𝑓1
, and if 𝑡1 → ∞, then 𝑡2 → 𝑡𝑓2

 (see equation 166). 

Therefore, each focal plane is conjugate with the corresponding plane located at 
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infinity. The focal planes themselves do not form a pair of conjugate planes, because 

𝑡𝑓1
 and 𝑡𝑓2

 do not simultaneously satisfy relation (170) of conjugate planes. 

 Equation (169) directly gives us the transversal linear magnification 

 

(171)     , 

 

or, if we refer to expressions (156), (157), and to the definition of focal distances (165), 

 

 

(172) 

 

 Note that, since it is always true that 𝑀21 = 𝑆21, equation (158), the transfer 

matrix between two conjugate planes has the following structure: 

 

(173)     . 

 

 By definition, the principal planes of the optical system are that pair of 

conjugate planes for which the transversal linear magnification has the value 𝑚𝑡 = +1, 

meaning that the image has the same size and the same orientation as the object. The 

positions of principal planes (object and image) thus follows from the conditions 

𝑀11 = 𝑀22 = 1, in which we use expressions (156) and (157), that is 

 

(174) 

 

 We may verify that positions (174) indeed satisfy the conjugate plane 

relationship (170), since they are, by definition, the conjugate pair for which 𝑚𝑡 = +1. 

The intersections between the principal planes and the optical axis determine the 

principal object (𝐻1) and image (𝐻2) points. The distance 𝐻1𝐻2  between principal 

planes is termed interstitium. 

 From expressions (165), (166), (174) result the following general relationships 

between the positions of focal and principal points, and focal distances, 

 

(175) 

 

 Note that the transfer matrix (173) written for the pair of principal planes (𝑚𝑡 =

+1) assumes the simple form of the fundamental matrix for spherical diopters (see 

equation (145)), that is, 
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(176)  . 

 

 Next we will use this remarkable 

property to simplify the formulae, by 

adopting the convention of measuring 

the object (𝑝1) and image (𝑝2) distances 

relative to the corresponding principal 

plane (Fig. 34). The transfer matrix 

between the conjugate planes is thus 

written as 

 

(177)   , 

 

and has simpler elements than matrix (155), namely 

 

(178)     , 

 

(179)     , 

 

(180)      , 

 

(181)   . 

 

 The stigmatism condition 𝑀12 = 0  leads to a generalization of the 

Huygens-Gauss formula, in the form deduced for spherical diopters, equation (128), 

that is, 

 

(182)      , 

 

where the focal distances 𝑓1 , 𝑓2  are considered expressed as in (165). Moreover, 

referring to the transformation (see formula 129)) 

 

 

 

 

where the segments 𝜁1, 𝜁2 determine the positions of conjugate points 𝑃1, 𝑃2 relative 



 

Ioan Ioviţ Popescu 
Optics 

I. Geometrical Optics 

57 

 

to the corresponding foci (see Fig. 34), from equation (182) we obtain the 

generalization of the Newton formula 

 

(183)      . 

 

 The transversal linear magnification 𝑚𝑡 = 𝑀11 = 1 𝑀22⁄ , equation (171), using 

elements 𝑀11, 𝑀22 of matrix (177), can be written as 

 

(184) 

 

 

 

that is, 

 

(185)     . 

 

These relations can also be directly deduced from the geometry of Fig. 34 (from the 

similar triangles highlighted with the same type of hachures). Otherwise, by 

eliminating 𝑆21, we also get 

 

(186)     . 

 

Expressions (185), (186) generalize those deduced in the case of spherical diopters, 

(132), (133). 

 The focal and principal points and planes completely determine the 

transformation of paraxial rays by the optical system, a fact based on which they are 

termed cardinal elements. This is illustrated in Fig. 34, which represents the graphical 

construction of the image with reference to the four cardinal points 𝐹1, 𝐹2, 𝐻1, 𝐻2 and 

the two construction rays passing through the foci (principal rays). The rule for 

achieving the construction is simple: any ray coming from the left, which is parallel to 

the optical axis, is deviated at the intersection with the principal image plane 

(determined by 𝐻2), and passes through 𝐹2; any ray coming from the left, which passes 

through 𝐹1, is deviated at the intersection with the principal object planes (determined 

by 𝐻1), and exits parallel to the optical axis. Obviously, constructing an image using 

real light rays (which effectively pass through the system) is usually a much more 

difficult task. 
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 The cardinal points, the 

object, and the image can also be 

arranged in a different order than the 

one considered in Fig. 34. Let us 

apply the same method of principal 

rays when the order is that 

illustrated in Fig. 35, that is: 𝐹1 , 

object, 𝐻2 , 𝐻1 , 𝐹2 . Unlike Fig. 34, 

where the image is real (the light rays 

effectively intersect in point 𝑄2), in this case, the image is virtual, because the rays do 

not effectively pass through point 𝑄2, but, upon exiting the system, they behave as 

though originating in 𝑄2. 

 Usually, there is no a priori order of cardinal points, and therefore, if they are 

all distinct, there are 4! = 24 different possibilities of arranging them along the optical 

axis. If we further consider the position of the object, it follows that there are 5! = 120 

different cases of graphical image construction, of which two have been presented in 

Fig. 34 and 35. 

 Of course, referring to the 

properties of the cardinal elements, we 

could trace the trajectories of any (not 

necessarily principal) construction 

rays and construct the image directly, 

with the help of two arbitrary rays, as 

illustrated in Fig. 36. Thus, any given 

incident ray 𝑄1𝐼1 may be considered as 

part of a parallel beam, one of which 

passes through focus 𝐹1. The focalization point 𝐹 of the parallel beam with its ray 𝑄1𝐼1 

is located at the intersection between the ray that passes through 𝐹1 and the image 

focal plane (determined by 𝐹2). Thus we determine the direction of emergent ray 𝐼2𝐹, 

conjugate with 𝑄1𝐼1. Any other ray 𝐽2𝐺, conjugate with 𝑄1𝐽1, and through it, the image 

𝑄2 of 𝑄1, can be constructed in a similar fashion. 
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 Graphical constructions 

achieved with the help of the cardinal 

points geometrically demonstrate the 

relations previously established 

analytically. Thus, Fig. 37 illustrates 

how a conical light beam with its apex 

in point 𝑄1(𝑦1) , situated within the 

object focal plane, is transformed into 

a parallel beam of inclination 𝛾2 , so 

that 𝑦1 = −𝑓2𝛾2  (see equation (163)), 

as well as the opposite phenomenon, the transformation of a parallel beam of 

inclination 𝛾1 into a conical beam with its apex in point 𝑄2(𝑦2), situated within the 

image focal plane, so that 𝑦2 = 𝑓1𝛾1 (see equation (164)). 

 Next, we will give a geometric 

demonstration of the nodal point 

theorem, according to which there is a 

pair of conjugate axial points 𝑁1, 𝑁2, so 

that for any incidence ray oriented 

towards the object nodal point 𝑁1 , 

there is a corresponding parallel 

emerging ray coming from the image 

nodal point 𝑁2 . Let there thus be a 

conical light beam with its apex at an arbitrary point 𝑄1 within the object focal plane 

(see Fig. 38). This beam is transformed by the optical system into one parallel to the 

ray 𝐼2𝐹2. From among all the rays originating in point 𝑄1, only one is parallel to the 

emerging rays (to 𝐼2𝐹2), namely the one that propagates along the direction 𝑄1𝐽1. This 

ray intersects the optical axis in 𝑁1, and the corresponding emerging ray 𝐽2𝑁2 in 𝑁2. 

However, since triangles 𝑄1𝐹1𝑁1  and 𝐼2𝐻2𝐹2 , and 𝐽1𝐻1𝑁1  and 𝐽2𝐻2𝑁2  are equal, it 

follows that 𝐹1𝑁1 = 𝑓2, 𝑁2𝐹2 = 𝑓1, relations independent of the position of point 𝑄1. In 

other words, the positions of the nodal points (𝑁1, 𝑁2 ) is determined only by the 

positions of the foci ( 𝐹1 , 𝐹2 ) and the focal distances ( 𝑓1 , 𝑓2 ). We can write the 

relationships thus obtained as 

 

(187) 

 

where 𝑡𝑛1
, 𝑡𝑛2

 represent the positions of the (object and image) nodal points. Their 

expressions can be obtained by introducing the focal distances (equations (165)) and 
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the positions of the focal points (equations (166)) into equations (187). The nodal points 

𝑁1, 𝑁2 can also be used as cardinal points in constructing images. 

 For convenience, let us review the expressions of the cardinal elements: 

 

 

 

 

(188) 

 

 

 

 

 All these parameters depend on only three elements ( 𝑆11 , 𝑆22 , 𝑆21 ) of the 

transfer matrix 𝑆 associated with the system (element 𝑆12 is not independent, since 

det 𝑆 = 𝑆11𝑆22 − 𝑆21𝑆12 = 1), as well as on the refractive indices of the object (𝑛1) and 

image (𝑛2) space. If 𝑛1 = 𝑛2, then 𝑓1 = 𝑓2, 𝑡𝑝1
= 𝑡𝑛1

and 𝑡𝑝2
= 𝑡𝑛2

. The focal distances 𝑓1, 

𝑓2 only depend on the element 𝑆21, which, if the system is immersed in air (𝑛1 = 𝑛2 =

1), effectively represents the convergence of the system, with its sign changed. 

 Some cardinal points can also be easily determined experimentally. The focal 

points 𝐹1, 𝐹2 are given by the position of the image of an object located at a distance. 

Moreover, the nodal points 𝑁1, 𝑁2 can be localized thanks to the property according 

to which a parallel beam remains focalized in the same point if the optical system is 

rotated around 𝑁1 and 𝑁2, respectively. In the case of the spherical diopter, equation 

(145), or of attached diopters (thin lenses), equation (151), we have 𝑆11 = 𝑆22 = 1, so 

𝑡𝑓1
= 𝑓1 , 𝑡𝑓2

= 𝑓2 , and 𝑡𝑝1
= 𝑡𝑝2

= 0, meaning the principal planes coincide with the 

plane tangent at the diopter vertex and the one tangent at the vertex common to the 

attached diopters, respectively. 

 Usually, the equivalent optical 

plan of any centered optical system, 

with the help of which, using known 

rules, we can graphically construct the 

images, is given by its cardinal points. 

In turn, these are determined based on 

the transfer matrix elements, 

equations (188), calculated based on 

the data of the actual system. 

Obviously, a set of cardinal points 
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defines a multitude of different actual systems, which, however, are equivalent 

regarding the way they construct images. 

 As a conclusion to this chapter, we will illustrate how the cardinal elements are 

calculated for three actual optical systems: a simple lens, a compound ocular system 

composed of two lenses, and a much more complex system, the human eye. 

 a) Let there be a biconvex glass lens (considered in Fig. 29.a), for which we’ve 

already calculated the transfer matrix, equation (152). From equations (188) we readily 

obtain the cardinal elements illustrated in Fig. 39, in which the numerical data are 

expressed in centimeters. 

 b) For the following example, we will consider the type Ramsden ocular system, 

whose characteristics are given in the following table: 

 

 

 

 

 

 

 

 Calculating matrix 𝑆 = 𝑅4𝑇3𝑅3𝑇2𝑅2𝑇1𝑅1 leads us to the result 

 

 

 

 

 According to equations (188), we have 

 

 

 

 

 

 

 

 

 

 

results represented in Fig. 40. Note that 𝐻1 is located to the right of 𝐻2. 

 c) The structure and properties of the human eye impose a series of 

requirements when designing visual apparatuses. It is a centered, convergent optical 
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system, containing a series of practically spherical diopters (Fig. 41). The successive 

transparent media are the cornea, the aqueous humor (𝑛 = 1.336), the crystalline lens 

and the vitreous humor (𝑛 = 1.336). The aperture of the crystalline (the pupil) is 

controlled by a diaphragm (the iris), and has a diameter of between 2 and 8 mm, 

varying according to the intensity of light. The optical system of the eye is complicated 

by the non-homogenous structure of the crystalline. It is a biconvex lens, formed out 

of around 20,000 successive transparent layers, whose refractive index varies from 𝑛 ≈

1.406, in the case of the peripheral layers, to 𝑛 ≈ 1.454 at the center.* By the action of 

the ciliary muscles, the curvature radii of the crystalline lens vary within certain limits, 

the greatest change being effected due to its curved frontal surface. 

 In this way, the crystalline behaves like a lens of varying focal distance, 

allowing eye accommodation, so that the image of considered objects may always 

form on the retina. The eye has the most refraction power at the surface of the cornea 

(which separates the air from the aqueous humor), but the variations of this power, 

necessary for accommodation, are caused by the alteration of the crystalline lens’ 

shape. When the ciliary muscles are relaxed, the lens’s curvature less pronounced, and 

its focal distance is at its maximum, so that the image of objects located at greatest 

distance is formed on the retina (punctum remotum). In this case, we say that the eye 

is not accommodated. In order to focalize on the retina objects located at gradually 

smaller distances, the crystalline lens must gradually curve, up to a maximum degree 

of accommodation, corresponding to a minimum focusing distance (punctum 

proximum), which for a normal eye is around 25 cm. 

 Properties similar to a real eye can be achieved if we consider the cornea as a 

simple refractive surface separating air (𝑛1 = 1) from the aqueous humor (𝑛2), and the 

                                                           
* Research concerning media of graded (continual) structure with respect to the refractive index is of 
great actual importance (see Chapter III). 
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crystalline as a homogenous lens (𝑛3) immersed between the aqueous humor (𝑛2) and 

the vitreous humor (𝑛4). Such a model for the unaccommodated (relaxed) eye, also 

called Gullstrand’s schematic eye, has the following parameters: 

 

 

 

 

 

 

 The cardinal elements of this system, according to equation (188), are 

 

 

 

 

 

 

 

 

 Note that 𝐻1𝐻2 = 𝑁1𝑁2 = 0.028 𝑐𝑚, but for many applications we may consider 

that the principal points and the nodal points, respectively, coincide (see Fig. 41). 

Naturally, the values of the cardinal elements change somewhat compared to the data 

presented above, when the crystalline becomes accommodated in order to focalize on 

the retina objects located at a finite distance. 

 The retina, located at the back of the eye, is the projection screen for the images 

of external objects. It consists of a mosaic of photosensitive elements, around 130 

million "rods" and 7 million "cones" perpendicular to the retina surface and connected 

to the brain through the optical nerve. The point through which the nerve exits the eye 

doesn’t contain any photoreceptors (the blind spot). The cones are responsible for 

diurnal vision and for the sensation of colors, acting like the very fine grain of color 

film, and the rods are responsible for nocturnal vision. The superficial density of cones 

increases closer to the yellow spot, or the macula, a depression in the retina, and peaks 

at around 180.000 cones/mm2 at its center, across an area of approximately 0.2 mm in 

diameter, called the fovea centralis. Note that the image of the full moon projected 

onto the retina has a diameter of approximately 0.2 mm, according to the general 

formula 

 

(164)      , 
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(also see Fig. 37), where 𝑓1 ≈ 17 𝑚𝑚, as shown in the table presented above. The image 

of the observed object always forms on the fovea centralis, which furnishes the finest 

and most detailed information, and determines the visual axis of the eye, along with 

the nodal points. Within the foveal area, the medium distance between the centers of 

neighboring cones is around 2.5 ∙ 10−6 𝑚. If we admit the hypothesis that two image 

points are perceived as distinct if they are separated by at least one unstimulated cone, 

that is, if we admit that (𝛾2)𝑚𝑖𝑛 ≈ 5 ∙ 10−6 𝑚, it follows that the angular resolution 

limit of the eye is 

 

(189)   , 

 

a result which well agrees with the physiological estimates regarding the normal eye’s 

visual acuity (≝ 1 (𝛾1)𝑚𝑖𝑛⁄ ). 

 

 Other physical and physiological aspects of human eye functioning 

as an optical receptor 

 

 After reviewing the main elements of the structure of the human eye, we would 

do well to study some of its functional aspects in more depth, as they are of special 

importance to practical applications. 

 As is known, because of the geometric aberrations (also see Chapter 2.8) of 

image forming systems, deviations from stigmatism occur, and the image of an object 

point is never precisely a point, but a luminous spot which extends spatially to a 

certain degree. It is therefore natural to ask whether the human eye, as an optical 

system, presents any astigmatic aberrations, and, if so, to wonder exactly how irksome 

are they? The answer to the first question is yes, because the image of a point object is 

never actually a point. Is it irksome? This time, the answer is no, and the explanation 

if that in the case of the eye, the image on the retina of the object point is much smaller 

than 𝑦2𝑚𝑖𝑛
≈ 5 𝑚𝑖𝑐𝑟𝑜𝑛𝑠. That is why the visual acuity (or the separating power, as it 

is sometimes called) of the normal eye is determined by the cellular structure* of the 

retina, and is not influenced by astigmatic aberrations. 

                                                           
* A retinal "cell" is a hexagon inscribed in a circle of diameter 𝑦2 ≃ 5 ∙ 10−6 𝑚; two neighboring "cells" 
each having in their center a cone are also separated by a cone located between them. According to this 
model, at least within the foveal area, the retinal structure is similar to that of a honeycomb. Each "cell" 
sends a single piece of information to the brain (at average cell illumination). 
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 Nor do diffraction phenomena produce any discomfort in the case of visual 

observation. To better understand this fact, let us calculate the diameter of the 

diffraction spot (the so called Airy disk) produced by the pupil, that is, by the eye’s 

diaphragm. If the pupil has the diameter 𝐷 = 2𝑅 , the angular opening of the 

diffraction spot is 𝛾1 = 1.22 𝜆 𝐷⁄ . If we consider 𝜆 = 550 𝑛𝑚  (the midrange of the 

visible spectrum) and 𝐷 = 2 𝑚𝑚  (the minimum possible value of the pupillary 

diameter), we obtain 𝛾1𝑚𝑎𝑥

(𝑑𝑖𝑓𝑓𝑟.)
= 3.355 ∙ 10−4 𝑟𝑎𝑑 ≈ 1′09′′, a value expressing the limit 

of the angular resolution of the eye (see relation (189)). For larger pupillary diameters 

(up to approximately 8 mm), the angle 𝛾1
(𝑑𝑖𝑓𝑓𝑟.)

 is smaller than (𝛾1)𝑚𝑖𝑛
(𝑑𝑖𝑓𝑓𝑟.)

, and the 

diffraction spot forms within a single retina cell. But we’ve said that details projected 

onto a single cell are not distinguished, are not separated, for which reason the 

diffraction spots, generated through diffraction around the pupillary aperture, are not 

bothersome either. 

 Since we know the value of (𝛾1)𝑚𝑖𝑛, it would be interesting to calculate the limit 

distance (𝑦1)𝑚𝑖𝑛 between two object points, situated at different distances |𝑝1| from 

the eye, that can still be observed as separate. If |𝑝1| = 25 𝑐𝑚 (the minimum distance 

of distinct vision, corresponding to the proximal point), we have (𝑦1)𝑚𝑖𝑛 = |𝑝1| ∙

(𝛾1)𝑚𝑖𝑛 = 0.074 𝑚𝑚   and (𝑦1)𝑚𝑖𝑛  grows as |𝑝1| grows. In order to distinguish two 

points located at a distance 𝑦1 = 1 𝑚𝑚 from each other, they must be looked at from 

a distance smaller than |𝑝1|𝑚𝑎𝑥 = 1 (𝛾1)𝑚𝑖𝑛⁄ = 3.4 𝑚. 

 In order to experimentally determine the eye’s visual acuity, multiple 

procedures and devices can be used: the Landolt ring, the Foucault grating, the Snellen 

or alphabetical chart, etc. Next we will only refer to the Landolt ring (1874). It is a 

circular ring, interrupted, like the capital letter C, black on a white background, and 

its outer (inner) diameter is five (three) times larger than its aperture. The ring,  

theoretically confirming normal visual acuity, is placed in such a way that the outer 

angular diameter has a value of 5′, and the aperture, 1′. 

 Visual acuity is easily established based on the distance from which the 

observer looks at the rig with one eye and can no longer perceive the interruption in 

the ring.* 

 The distance |𝑝1| of the object whose image is projected on the retina following 

the adjustment of the crystalline curvature radii is termed accommodation distance. 

For the normal eye, the accommodation distance |𝑝1| varies between ∞ and 0.25 𝑚. 

For the myopic eye, when |𝑝1| = ∞, the image forms before the retina (the myopic eye 

                                                           
* For details regarding measuring visual acuity, we recommend Fiziologie oculară, Medical Press, 
Bucharest, 1986 (Chapter XII). 
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cannot accommodate for infinite distances). For the hypermetropic eye, for |𝑝1| = ∞, 

the image forms behind the retina. Myopia can be corrected with eyeglasses with 

divergent lenses, and hypermetropia, with convergent lenses, which focus the image 

on the retina. 

 The limited character of the eye’s visual acuity has extremely important 

consequences and applications, which we should know. Firstly, as we’ve previously 

pointed out, the approximately stigmatic character (non-stigmatic, to be precise) of the 

images given by most instruments, which we have to deal with in practice, does not 

cause discomfort to the eye (unless the aberrations are great). To better understand 

the essence of this fact, let us give as an example an instance of viewing images on the 

television screen. It is known that these images are usually formed out of 625 parallel 

bands (lines). If the height of the screen is ℎ, the width of a band is evidently ℎ 625⁄ . If 

we view the screen from a distance |𝑝1|, each band will be seen at an angle equal to 

ℎ 625⁄  |𝑝1| radians. In order for us not to perceive the discontinuities of the screen, it 

is necessary for this angle to be smaller than (𝛾1)𝑚𝑖𝑛 = 1 3400⁄  𝑟𝑎𝑑𝑖𝑎𝑛𝑠 (in the case of 

the normal eye). Therefore, it necessarily follows that |𝑝1| > 5.44ℎ. In the case of a 

regular TV receiver, of ℎ = 34 𝑐𝑚, we get |𝑝1| > 1.85 𝑚. In reality, for some people, 

the angular resolution limit (𝛾1)𝑚𝑖𝑛 can be smaller than the "standard" value of 1′ (up 

to 10′′), and for this reason the distance |𝑝1| must be increased accordingly. 

 This example shows that there is also an optimum distance from which 

paintings must be viewed. From a short distance, too many technical details are 

observable (related to the applying of color to the canvas, etc.), but the overall picture 

cannot be "seen". On the other hand, when reading or working, a viewing distance 

shorter than the theoretical distance is preferable, even if this will cause details of no 

interest to become visible (dust, spots, porous areas on the paper, etc.). As a practical 

general rule, an angle 𝛾1 in the interval (1 ÷ 5)(𝛾1)𝑚𝑖𝑛 is recommended. 

 Another practical aspect of great importance is that of depth of field. It is known 

that, beside the object points situated at the accommodation distance, the eye can also 

clearly see neighboring points located at smaller or greater distances. The depth of 

field is the distance between the (upper and lower) limits of this space. Let us consider 

the eye in Fig. 42 accommodated for distance 𝑎  and plane (𝜋) . Disregarding the 

geometrical aberrations and diffraction (we’ve seen why!), let us suppose that the 

image of point 𝑂, in plane (𝜋), is a point 𝑃. Then we consider another object point 𝑂′, 

situated at a distance 𝑎′ (≠ 𝑎) from the eyes, and consider its image on the retina to 

correspond to the angle (𝛾1)𝑚𝑖𝑛. The outer rays of the conical light beam forming this 

image intersects the accommodation plane (𝜋) forming a circle AB. The spot on the 

retina is precisely the image of this circle, of diameter 𝑎 ∙ (𝛾1)𝑚𝑖𝑛 ≡ 𝐴𝐵. Based on the 
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similarity between triangles 𝑂′𝐴𝐵, 𝑂′𝑀𝑁, we easily deduce that 

 

   , 

 

or 

 

 

 For the minimum value of the pupillary diameter, 𝐷 = 2 𝑚𝑚, the last term has 

the value (𝛾1)𝑚𝑖𝑛 𝐷⁄ = 0.147 diopters, and it immediately follows that 

 

(190) 

 

 When the eye is accommodated for infinite distances (𝑎 = ∞), we get 𝑎′ =

∓6.8 𝑚  (which is approximated to 7 𝑚 ), where the plus sign corresponds to real 

objects, and the minus sign, to virtual objects. This indicates that a standard, relaxed 

eye can simultaneously see with sufficient clarity real objects located at distances 

larger than 7 𝑚, and virtual objects located at the same distance, but behind the viewer. 

(see Fig. 43). 

 At maximum accommodation, when 𝑎 = 0.25 𝑚 (punctum proximum), based 

on the deduced formula, we get 𝑎′ = 24.1 𝑐𝑚 and 𝑎′ = 26 𝑐𝑚, respectively. 

 When using optical instruments (telescopes, spyglasses, microscope, etc.), the 

issue of the depth of field must be analyzed separately, because it also depends on the 

magnification 𝐺 of the instrument. When using a microscope, for example, the depth 

of field is practically null (see Chapter 2.5). 

 Note that the matters discussed here only apply in the situations in which the 

image is formed in the foveal area of the retina, that is, in the center of the yellow spot, 

with has a diameter of approximately 0.2 𝑚𝑚. Compared to the optical center of the 

crystalline, the fovea centralis has an angular diameter of about 1° (or 0.0175 𝑟𝑎𝑑𝑖𝑎𝑛𝑠). 

The image of an object situated at a distance |𝑝1| = 0.25 𝑚, is projected onto the foveal 
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area if its diameter is 4.35 𝑚𝑚. At a distance |𝑝1| = 1 𝑚, it fits into the optimum visual 

field, determined by the angular aperture of the fovea, a disk of diameter 1.74 𝑐𝑚, and 

so on. 

 Larger objects, projected onto the rest of the yellow spot, are see less distinctly. 

Relative to the same optical center, the angular apertures of the yellow spot are 8° 

horizontally and 6° vertically; this less optimal visual field, at |𝑝1| = 0.25 𝑚, allows 

the eye to perceive 3.5 𝑐𝑚 horizontally and 2.6 𝑐𝑚 vertically; at |𝑝1| = 1 𝑚, 14 𝑐𝑚 and 

10.4 𝑐𝑚, respectively, and so on. 

 Now we can go back to the issue of the optimum distance from which the 

television screen should be viewed. If we position ourselves so that the image of the 

screen projected onto the retina fits on the yellow spot, that is, so that the screen height 

ℎ is seen with an angle of approximately 5°, the width of the bands will be seen at an 

angle of 5° 625⁄  𝑙𝑖𝑛𝑒𝑠 ≈ 0.5′ < (𝛾1)𝑚𝑖𝑛. This is considered to be the correct position 

from which one should watch television. The distance |𝑝1| at which we must position 

ourselves in order to satisfy the above condition is |𝑝1| = 6 0.087 ≈ 11.46ℎ⁄ . When ℎ =

34 𝑐𝑚 (a regular screen), we obtain |𝑝1| = 3.90 𝑚. 

 If we wish to see all the details of the images on the screen, even with the risk 

of also seeing the lines, we must move closer, up to about this distance, so that the 

width of one of the bands is seen at an angle equal to (𝛾1)𝑚𝑖𝑛. A compromise between 

the two distances is usually made. 

 We consider it necessary to also approach the issue of binocular vision, and that 

of stereoscopic vision * , closely linked to the former, leaving the issue of color 

perception for later. Note that when we view an object with both eyes, we do not 

obtain the same information twice. We receive a certain additional amount of 

information from the overlapping of the two images, processed automatically at the 

level of the brain. 

 First, note that the eyes are capable of rotating by about 120° along the vertical 

plane (the nose-forehead direction), and by 150° within the horizontal plane. This 

allows for the relatively narrow visual field to be widened due to the mobility of 

images coming from various visual fields, which are swept by our eyes. 

 When we view the same object point with both eyes, their visual axes are 

concurrent in that point, and through their inclination relative to the "forward" 

direction, the distance to the object is perceived (telemeters work on the same 

principle). Let us term the distance 𝑒  between the centers of the eyes pupillary 

distance; it varies from person to person, and ranges from 54 to 72 𝑚𝑚 (we will use 

                                                           
* The capacity to perceive the relative placement of objects in space. 
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the standard distance of 65 𝑚𝑚). If an object point is located at a distance |𝑝1|, the 

stereoscopic parallax 𝜂 is defined as the ratio 𝜂 = 𝑒 |𝑝1|⁄ . Let us now consider two 

object points located at distances |𝑝1
′ | and |𝑝1

′′|. Their parallax difference is evidently 

∆𝜂 = 𝑒(|𝑝1
′′|−1 − |𝑝1

′ |−1). It is believed that the parallax difference is perceivable (that 

is, there is perception of depth of the space in which the two points are seen) if its 

value is greater than a certain minimum (∆𝜂)𝑚𝑖𝑛, specific to each person; it varies 

between 10′′ and 7′′, but it can reach even smaller values (3′′, for example) through 

training (as with aviators). For regular analysis, in the case of normal eyes, the 

standard value (∆𝜂)𝑚𝑖𝑛 = 10′′. 

 Let us once again give several numerical examples. If one of the objects is 

located at infinity (a star, for example), and we consider the other point at a distance 

equivalent to (∆𝜂)𝑚𝑖𝑛, based on the formula for parallax difference, we obtain |𝑝1
′′| =

𝑒 (∆𝜂)𝑚𝑖𝑛⁄ = 65 𝑚𝑚 10′′⁄ = 1340 𝑚. Let us use the notation |𝑝1|𝑚𝑖𝑛. Terrestrial objects 

located at distances surpassing the value of |𝑝1|𝑚𝑖𝑛 are perceived as projected on the 

horizon, its radius having a value of approximately 4 𝑘𝑚. 

 If we write the general relationship expressing the pupillary distance as 𝑒 =

|𝑝1|𝑚𝑖𝑛 ∙ (∆𝜂)𝑚𝑖𝑛, we get (∆𝜂) = (∆𝜂)𝑚𝑖𝑛|𝑝1|𝑚𝑖𝑛(|𝑝1
′′|−1 − |𝑝1

′ |−1), and in the limit case 

in which (∆𝜂) = (∆𝜂)𝑚𝑖𝑛, we have |𝑝1|𝑚𝑖𝑛
−1 = |𝑝1

′′|−1 − |𝑝1
′ |−1. Using this relationship, 

we can calculate the distance ∆𝑝1 = |𝑝1
′ | − |𝑝1

′′| between the point located farther away 

and the one located closer to the viewer, which can be viewed with the perception of 

depth. We obtain ∆𝑝1 = |𝑝1
′′|2 (|𝑝1|𝑚𝑖𝑛 − |𝑝1

′′|)⁄ . When |𝑝1
′′| = 25 𝑐𝑚  (punctum 

proximum), it follows that ∆𝑝1 ≈ 0.05 𝑚𝑚, and when |𝑝1
′′| = ∞, we have ∆𝑝1 = ∞. 

Between the two extreme cases, we obtain intermediary values. For example, for 

|𝑝1
′′| = 100 𝑚, we get ∆𝑝1 ≈ 8 𝑚. 

 Let us now analyze how binocular vision can generate the sensation of depth, 

that is, the stereoscopic effect. In order to do this, we will study the situation outlined 

in Fig. 44. Let there be two object points 𝑀𝑠  and 𝑀𝑑  located in the same 

accommodation plane (𝜋), situated at a distance |𝑝1| from the eyes. Let us take point 

𝑀𝑠 to be only observed with the left eye, and point 

𝑀𝑑, only with the right. If we extend the visual axes, 

they intersect in the 𝑀  points, and so create the 

impression that there is a single object point 𝑀 , 

located at distance |𝑝| . Based on the similarity 

between triangles, we can write 𝑒 |𝑝|⁄ =

𝛿 (|𝑝| − |𝑝1|)⁄ , meaning |𝑝| = 𝑒 ∙ |𝑝1| (𝑒 − 𝛿)⁄ . Here 

𝛿 > 0  when the point 𝑀  is located farther away 

than plane (𝜋), the situation illustrated in the left of 
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the figure, and 𝛿 < 0 when point 𝑀 is located closer than (𝜋), the situation in the right 

of the figure. 

 Evidently, in these situations, any plane (𝜋) would not hold only the pair of 

points 𝑀𝑠  and 𝑀𝑑  (or 𝑀𝑠
′  and 𝑀𝑑

′ ), but a multitude of object points paired together, 

having different values and signs of the parameter 𝛿. The apparent points 𝑀 and 𝑀′ 

corresponding to the various pairs of object points will be seen at different distances 

|𝑝|, before or behind the accommodation plane (𝜋), depending on the corresponding 

value of the parameter 𝛿. In this case, the sensation of depth is generated at the level 

of the brain. 

 If we artificially increase the pupillary distance 𝑒 (using telemeters or other 

optical instruments, for example), we can increase the distance |𝑝1|𝑚𝑖𝑛 = 1340 𝑚 , 

called stereoscopic vision threshold, as well as intensify the stereoscopic effect itself. 

 The matters heretofore discussed refer only to daylight vision, which features 

illumination values of at least 100 𝑙𝑢𝑥, for which the elementary optical receptors are 

the cones. When illumination drops below 100 𝑙𝑢𝑥, the cones become less and less 

sensitive to the luminous stimulus. This is when the rods become important. However, 

they are not sensitive to color. As we’ve said before in the first part of this chapter, the 

number of rods on the retina is much larger than that of cones, but, since they’re 

distributed over a wider area, their superficial density is relatively small. 

 Let us quickly sketch an analysis of the situation in which illumination is lower 

than the value 1 100⁄  𝑙𝑢𝑥, that is, an analysis of nocturnal (crepuscular) vision. 

 There are numerous essential differences between diurnal and nocturnal 

visions. The first of these is the disappearance of color, determined by the inhibition 

of cone activity. Secondly, closely connected with this inhibition is decrease in visual 

acuity and the diminishing of depth perception, while a limit case sees the loss of any 

stereoscopic effect. In the case of nocturnal vision, the yellow spot and the macula, 

especially, lose their relative qualities which the rest of the retina lacks. In quite 

complementary fashion, the peripheral parts of the retina now become more sensitive. 

 High illumination, necessary for the cones to function, is harmful to the rods, 

which must be shielded, protected in the case of diurnal vision or very high 

illumination. This is partly achieved by way of the varying pupillary diameter (2 −

8 𝑚𝑚), a process following which the surface allowing light into the eye decreases in 

size approximately 16  times. It must be said, however, that this mechanism only 

accounts for a very small part of the adaptation interval, whose value is around 1012 

(the ratio between the maximum and minimum illumination for which the eye can 

adapt). The basic physiological mechanism of adaptation is of a physicochemical 

nature, and essentially entails the following. The light incident on a retinal cell effects 
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the partial decomposition of the visual purple (or rhodopsin) located there, and the 

decomposed rhodopsin irritates the visual nerve. Using the energy obtained from the 

blood supplied to the retina, the rhodopsin is regenerated, and a dynamic equilibrium 

between decomposed and whole rhodopsin is established. As the light increases in 

intensity, the equilibrium rests at a smaller quantity of whole rhodopsin, so sensitivity, 

which is proportional to this quantity, is lessened. Beside this adaptation mechanism, 

there are the effects produced by the migration of the so-called dark pigment. Exposed 

to weak illumination, the pigment withdraws towards the liminal space between cells, 

and spreads across the entire surface of the cell when the illumination to which the 

eye is exposed intensifies, thus shielding it from its harmful action. 

 Although it is said that adaptation occurs automatically, we must note that the 

cumulative processes of all the types of mechanisms does not unfold instantaneously. 

It has a duration of several (1 – 3) minutes and is asymmetrical: adaptation to intense 

illumination (entailing the reduction of sensitivity) takes place more quickly than 

adaptation for weak illumination. Another important aspect is the fact that the fastest 

mechanism among the three outlined above is that of the variable pupillary diameter. 

 A very important effect, relevant for the changes that occur upon switching 

from diurnal to nocturnal vision, was highlighted by Czech physiologist J.E. Purkinje 

(1825). Let there be two identical surfaces, one red, and the other blue, similarly visible 

in diurnal conditions, of similar luminance (brightness). As conditions change to those 

of nocturnal vision and luminosity diminishes, we would notice that the blue surface 

is much more visible that the red one. The blue surface would appear white, and the 

red surface, dark gray. 

 Upon looking into this phenomenon, we have thus approached the issue of 

color perception. The theoretical foundation regarding colored vision was laid during 

the last century, by Th. Young, and then by H. Helmholtz. Unfortunately, the 

associated mechanism is not well understood even today, and there are numerous 

hypotheses describing its functioning. Still, the essence of the experimentally 

grounded Young-Helmholtz theory is considered to be valid, for it explains why we 

clearly perceive colors through diurnal vision, and only differentiate between levels 

of luminosity through nocturnal vision. According to this theory, the cones are 

responsible for diurnal vision, and the rods, for nocturnal vision. Moreover, it has been 

accepted that there are three types of cones on the retina, of different spectral 

sensitivity, each of which contains a photosensitive pigment for one of the 

fundamental colors: red, green and blue. When these photosensitive "particles" are 

stimulated by light, the corresponding color sensation occurs, and through the mixing 

of sensations in appropriate proportion (depending on spectral sensitivity), all the 
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other colors are obtained. Based on this observation, it seems perfectly natural to 

express any color using three "coordinates" signifying the degree to which each 

"fundamental" color is involved (Maxwell’s color triangle), according to the equation 

"Color = r (red) + g (green-yellow) + b (blue)". 

 Research conducted during the 

recent half century have confirmed the 

suppositions of the Young-Helmholtz 

theory. For example, studies on spectral 

absorption undertaken by G. Studnitz in 

1941 proved the existence of absorption 

(and retinal sensitivity) maxima: 𝜆1 =

470 𝑛𝑚  (blue), 𝜆2 = 550 𝑛𝑚  (green-

yellow), and 𝜆3 = 650 𝑛𝑚  (red). By 

calculating the median value of the three 

absorption curves, we can determine that the sensitivity maximum is 𝜆𝑑 = 555 𝑛𝑚. 

On the other hand, the sensitivity maximum of nocturnal vision, in which rods play 

the central role, is 𝜆𝑐 = 510 𝑛𝑚, meaning it approaches the blue maximum, compared 

to diurnal vision (see Fig. 45). The Purkinje effect can be easily understood if we take 

into account these considerations. 

 At the present moment, it is known for certain there is only one type of rod 

elements, and that they have low chromatic sensitivity (only for 𝜆 ≤ 625 𝑛𝑚 ). 

However, we do not know whether each retinal cone has in its structure three 

specialized chromatic receptors, or if there are three types of cones with distinct 

spectral sensitivity curves. Based on the experimental data of W.A. Rushton and R.A. 

Weale (from the 1952 – 1965 period), we may conclude that there are three visual 

pigments on the retina, each corresponding to a color, with each cone containing a 

single type of pigment. The research conducted in 1967 by T. Tomita have led to the 

detection of three groups of cones, with the following distribution: 74% have 611 𝑛𝑚 

sensitivity, 10% have 462 𝑛𝑚 sensitivity, and 16% have 462 𝑛𝑚 sensitivity. Therefore, 

the idea is outlined that there are three types of chromatically specialized cones, each 

containing a different pigment (eritrolab, hlorolab, and tsianolab, respectively) 

 Although we do not intend to go into details extending beyond the physical 

scope of this book, we would like to point out that there are people (1% of men and 

0.1% of women) whose visual apparatus lack chromatic receptors of a certain kind 

(dichromacy). The most frequently occurring type is daltonism, the absence of cones 

sensitive to red (the person affected cannot distinguish red from green). It is much 

rarer for cones corresponding to the other two "fundamental" colors to be absent. 



 

Ioan Ioviţ Popescu 
Optics 

I. Geometrical Optics 

73 

 

There are also people who lack two of the three types of cones (monochromacy), who 

cannot distinguish colors at all, although such cases are extremely rare. The absence 

of rods or their presence in insufficient amount is a condition known as hemeralopia. 

The eye of a person with this condition functions normally in diurnal conditions, but 

cannot adapt to nocturnal conditions. 

  

 2.4 Spherical Lenses 

 

 The simplest system of spherical diopters is the spherical lens, formed out of 

two coaxial diopters with the same internal medium. We will next deduce the general 

expressions of the transfer matrix 𝑆  and of the cardinal elements for a general 

spherical lens (𝑛2, 𝑟1, 𝑟2, 𝑔) immersed in the same medium (𝑛1 = 𝑛3). We have 

 

 

 

 

from which it follows that 

 

 

(191) 

 

 

where we’ve used the notation 𝑛 = 𝑛2 𝑛1⁄ = 𝑛2 𝑛3⁄  for the relative refractive index of 

the lens relative to the immersion medium. Note that all the elements of matrix S are 

linear functions of the lens thickness 𝑔. 

 From equations (188), we obtain the same value for the object and the image 

focal distance 

 

(192)     , 

 

and the same convergence 

 

(193)    , 

 

an expression which is known as the lens maker’s formula. On the enclosure of 

commercial lenses the value of their convergence in air ( 𝑛1 = 𝑛3 = 1) is marked. 
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Depending on the value of the refractive index 𝑛, the curvature radii 𝑟1, 𝑟2, and the 

thickness 𝑔, the lens can be positive (convergent lenses), negative (divergent lenses), 

or null (afocal lenses). 

 The Huygens-Gauss and the Newton expressions of the conjugate point 

relationship are written according to equation (182) and equation (183), respectively, 

that is 

 

(194)     . 

 

 Equations (188) and (191) give the positions of the cardinal points 

 

 

 

(195) 

 

 

 

 Usually, the principal points can be located within, as well as outside the lens, 

and there is no a priori order of their positions. The distance between the principal 

points of the lens is 

 

(196)    . 

 

 An interesting special case is that of the afocal lens ( 𝑆21 = 0 ). The 

corresponding condition is deduced by eliminating the convergence, equation (193), 

meaning 

 

(197)     . 

  

 It can be easily verified that this condition is equivalent to that of the 

coincidence of inner foci of the two diopters of the lens. The angular magnification of 

the afocal lens (immersed in the same medium) is, according to equations (186) and 

(191), 

     , 

 

or, if we introduce the thickness 𝑔 given by condition (197), 
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(198)      . 

 

In order to illustrate, let us consider the numerical example 𝑛 = 1.5, 𝑟1 = 100 𝑚𝑚, 𝑟2 =

−2 𝑚𝑚, so that from equations (197), (198), we obtain 𝑔 = 306 𝑚𝑚 and 𝑚𝑎 = −50, 

respectively. In this instance, the afocal lens is actually a glass bar with spherical ends, 

and, constitutes a simple telescope, of significant angular magnification. 

 A special case of great practical importance is the thin lens. In the case of the 

ideal thin lens (two completely attached diopters), we have 𝑔 ≈ 0, so that the lens 

maker’s formula (193) becomes 

 

(199)     . 

 

 According to equations (191), the transfer matrix is in this case written as 

 

(200)     , 

 

and the positions of the cardinal points, equations (195), are given by 𝑡𝑓1
= 𝑡𝑓2

= 𝑓, 

𝑡𝑝1
= 𝑡𝑝2

= 𝑡𝑛1
= 𝑡𝑛2

= 0 . These results are readily generalized for a system of 

attached thin lenses (immersed in the same medium), whose transfer matrix is, 

evidently, 

 

(201)     . 

 

 

This system is therefore equivalent to a single thin lens whose convergence is equal to 

the algebraic sum of the convergences of component lenses, that is, 

 

(202)      . 

 

 A better approximation of the formulae for thin lenses, in which thickness 𝑔 is 

no longer completely overlooked, can be obtained by introducing the focal distance 

from equation (199) into equations (195), (196). We thus obtain a fair approximation 

of the positions of principal points for this kind of real, thin lenses (𝑓𝑔 ≪ 𝑟1𝑟2), 
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(203) 

 

 

 

 

 The principal points calculated with these formulae in the case of several types 

of thin glass lenses immersed in air (𝑛 = 1.5) are illustrated in Fig. 46. In these cases, 

𝐻1𝐻2 = 𝑔 3⁄  (this relationship also applies to the relatively thick lens presented in Fig. 

39). 

 As an application for a 

convergent lens ( 𝑓 > 0 ), let us 

consider the simple microscope (the 

magnifying glass). In this case, the 

real object to be investigated (𝑦1 > 0, 

𝑝1 > 0) is placed near the focus 𝐹1, a 

little to its right, to be more precise, so 

that its image is virtual, straight, and 

magnified (𝑦2 > 0, 𝑝2 < 0), as we can 

see in Fig. 35. In this way, the eye, 

which is usually located near the 

image focal plane (𝐹2), sees the image 

at an angle 𝜃2, larger than the angle 

𝜃1, at which it would directly see the 

object 𝑦1  (that is, without the use of 

the magnifying glass) if it were 

placed within the image plane (Fig. 

47). According to equation (184), we 

have 

 

(204)    . 

 

 The most advantageous distance from which to clearly see the objects or their 

images is the least distance of distinct vision (punctum proximum), whose values is 

approximately 0.25 𝑚 = 1 4⁄  𝑚. By definition, the magnification G of the (simple or 

compound) microscope is 
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(205)   , (𝑓 is expressed in meters). 

 

 Since it is usually the case that 𝑓 ≪ 25 𝑐𝑚, we basically have 

 

(206)     (𝑓 in meters). 

 

 The system’s magnification can be increased by decreasing its focal distance. 

However, in practice, it is not possible to go beyond the value 𝐺 ≈ 8, corresponding 

to 𝑓 ≈ 3 𝑐𝑚 , if using only one lens, because of the small curvature radii and the 

corresponding significant geometric and chromatic aberrations. These aberrations can 

be largely compensated for in appropriately chosen lens systems. An achromatic 

system of attached lens, with a diaphragm for limiting the light beam, can reach values 

of 𝐺 ≈ 25 (𝑓 ≈ 1 𝑐𝑚). Aberrations can also be lessened by using a doublet of thin 

lenses as a magnifying glass, separated by a distance equal to half the sum of their 

focal distances, such as the Ramsden or the Huygens ocular systems. Usually, they are 

incorporated into more complex optical systems (microscopes, telescopes), in which 

they serve to examine the image furnished by the objective. As we will see in the next 

section, this kind of compound instruments even allow magnification values of 𝐺 ≈

102 ÷ 103. 

 

 2.5 Compound Systems 

 

 Generally, in order to increase magnification and improve the quality of images, 

two or more lenses are associated. One type of such compound systems are the 

objectives, which form real images, and the oculars, which form virtual images. The 

microscope (intended for observing small, closely grouped objects) and the telescope 

(used for observing objects located far away) are, in turn, composed of an objective, 

which forms the intermediary image, and an ocular, which is used as a magnifying 

glass, and forms the final virtual image. 

 

 A. The Thin Lens Doublet 

 

 Let us first consider the simplest of compound systems, namely the doublet 

system, composed of two thin lenses, of convergences 1 𝑓1⁄ , 1 𝑓2⁄ , separated by the 

distance (the doublet thickness) 
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(207)      , 

 

which are immersed in the same 

medium of refractive index 𝑛 (Fig. 48). 

The parameter 𝑙 , called optical 

interval, is the distance between the 

inner foci of the doublet. Fig. 48 

illustrates the construction of the 

image, by way of the principal rays 

passing through the foci of the lens 

components. The first lens, 𝐿1 , is 

called field lens, or collecting lens, and the second, 𝐿2 , eye lens. Due to its main 

application, the thin lens doublet is synonymous with the ocular. The doublets are 

classified as positive or negative, depending on whether the object focus 𝐹1  of the 

system is real (that is, is located before 𝐿1 ) or virtual (that is, located after 𝐿1 ). 

Evidently, only the positive ocular can be used as a magnifying glass for observing 

real objects, and only the negative ocular can be used to observe virtual objects. The 

convention is for any doublet to be described through its symbol, composed of three 

algebraic numbers 𝑝, 𝑞, 𝑟, so that 

 

(208)     ,  

 

where, for technical reasons, the constant can be no smaller than a few millimeters. 

The following table presents several doublets used in practice: 

 

Ramsden 1 1 1 positive 

Modified Ramsden 3 2 3 positive 

Huygens 4 3 2 negative 

Dollond-Huygens 3 2 1 negative 

Wollaston 2 3 6 positive 

 

 Next we will deduce analytically the formulae of the thin lens doublet. The 

system’s transfer matrix is 

 

   ,   

    

and has the elements 
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(209) 

 

 

 Note that all the elements of matrix 𝑆 are linear functions of the distance 𝑑 

between the lenses, thus allowing the user to suitably adjust the cardinal elements 

depending on application requirements. From equations (188) and (209), we obtain 

the expression for the doublet convergence 

 

(210)     , 

 

also called the Gullstrand formula, as well as the positions of the cardinal points 

 

(211)     , 

 

(212)   . 

 

Since the immersion media at both ends is the same, we also have 𝑡𝑛1
= 𝑡𝑝1

, 𝑡𝑛2
= 𝑡𝑝2

. 

We’ve thus determined all the cardinal elements of the thin lens doublet, namely the 

focal distance 𝑓  (equation (210)), the principal points 𝐻1 , 𝐻2 , through 𝑡𝑝1
= 𝐻1𝐻11 , 

𝑡𝑝2
= 𝐻22𝐻2  (equation (211)), and the focal points 𝐹1 , 𝐹2 , through 𝑡𝑓1

= 𝐹1𝐻11 , 𝑡𝑓2
=

𝐻22𝐹2 (equation (212)). We can also determine the positions of focal points based on 

the relations 

 

(213) 

 

The latter are nothing other than 

expressions of the Newton formula, 

equation (183), the relations between the 

pair of conjugate points 𝐹1, 𝐹21 and 𝐿1, and 

𝐹12, 𝐹2 and 𝐿2. 

 The simplest oculars, used in 

microscopes and telescopes, are the 

Huygens and the Ramsden oculars, 

illustrated in Fig. 49. The cardinal elements 

have been calculated based of equations 
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(210) – (212), and the images have been constructed by way of the principal rays 

passing through the foci of the lens components. In both cases, we have considered 

the eye to be conveniently located behind the ocular, and to view the final (virtual) 

image (located at infinity) in a relaxed state, which requires the image furnished by an 

objective system (not shown in the figure) to be located in the ocular system’s object 

focal plane itself, 𝐹1. But, as we have seen, points 𝐹1 and 𝐹21 are conjugate relative to 

the field lens 𝐿1 .The image in 𝐹1  represents an object (virtual in the case of the 

Huygens ocular, real in that of the Ramsden ocular), whose image (real for the 

Huygens ocular, virtual for the Ramsden version) is formed by the field lens 𝐿1 in the 

object focal plane 𝐹21 of the eye lens 𝐿2. Evidently, the final image furnished by lens 

𝐿2 (so, by the entire ocular) is virtual, and located at infinity. As in the case of the 

magnifying glass, this image can be brought closer up to a minimum distance of 

distinct vision (≈ 25 𝑐𝑚), by moving the ocular appropriately. 

 As we will see in a later chapter (namely in Chapter 2.7), the condition for 

convergence achromatization in the case of thin lens doublets made out of the same 

glass is 

 

(214)      . 

 

It immediately becomes apparent that Huygens-type oculars (4, 3, 2) and (3, 2, 1) 

satisfy this condition. Moreover, the ocular (3, 2, 1) also has a property that an 

incidence ray parallel to the principal optical axis is refracted by the same angle on 

each lens.* This balanced distribution of the refraction effect allows the softening of 

spherical aberrations. Note that the Ramsden ocular (1, 1, 1) also satisfies equation 

(214). But in this case, 𝑑 = 𝑓2 , so that, unfortunately, focal plane 𝐹21  and the 

corresponding image are located right on the field lens 𝐿1. It is for this reason that the 

viewer also observes through the ocular any impurity or flaw the surface of this lens 

might have (dust, stains, scratches). This inconvenient aspect is avoided by bringing 

the two doublet lenses slightly closer, up to a distance of 𝑑 = 2𝑓2 3⁄ , maintaining 𝑓1 =

𝑓2. In this way the modified Ramsden ocular (3, 2, 3) is obtained (presented in Fig. 49). 

This version no longer strictly satisfies the achromatization condition (214). The 

relatively weak chromatic aberrations of this ocular are compensated for in the case of 

the Kellner ocular (3, 2, 3), in which the only modification consists of replacing the eye 

lens with a contact achromatic doublet obtained by attaching a convergent lens of 

                                                           
* The condition for this to happen, in paraxial approximation, is 𝑓1 − 𝑓1 = 𝑑, which, in conjecture with 
𝑓1 + 𝑓2 = 2𝑑 (equation (214)), results in ocular (3, 2, 1). 
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crown glass to a divergent lens of flint glass (see Chapter 2.7). Ramsden oculars have 

the advantage of allowing the introduction of an ocular micrometer across the 𝐹1focal 

plane, for measuring the size of the real image formed by the objective system. 

 In practice, in order to ensure aplanatism (see Fig. 24) and the correction of 

tiresome geometric and chromatic aberrations in the desired application, the 

objectives and oculars of high performance optical systems are themselves fairly 

complicated compound systems, as in Fig. 50 can be observed the case of an Erfle 

ocular, with 𝑓 = 25.4 𝑚𝑚 (Hopkins, 1962), and in Fig. 51, a microscope objective of 

numerical aperture 𝑛1 sin 𝛾1 = 0.85  and 𝑓 = 4.19 𝑚𝑚  (Ruben, 1964). It is not our 

purpose to introduce the reader to the subtle complexities of designing modern 

dioptric systems, but rather to familiarize him with evaluating, using, and adapting 
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the systems already widely employed in current practice. 

 

 B. Coaxial Optical System Doublet 

 

 Heretofore we have 

learned to calculate the transfer 

matrix 𝑆  of any centered optical 

system, and, with the help of 

equations (188), to determine its 

cardinal elements. In this we have 

obtained the equivalent optical 

design based on which we may 

graphically construct the images. 

So that we may better understand the functioning of microscopes and telescopes, it is 

necessary that we next generalize the formulae for the thin lens doublet (equations 

(210) – (213)), to encompass any doublet of coaxial optical systems. Therefore, let 

there be system 𝑆 (see Fig. 52), composed of two subsystems, 𝑆1 and 𝑆2, described by 

their transfer matrix and, based on equations (188), their cardinal elements, namely 

 

 

 

 

 We will use the notation 𝑙 for the optical interval, that is, the distance 𝐹12𝐹21 

between the doublet’s inner foci, and the notation 

 

(215)      , 

 

for the doublet thickness, that is, the distance 𝐻12𝐻21  between the inner principal 

points. For the sake of generality, we will consider the immersion media to be different. 

There will therefore be three media: 𝑛1, 𝑛2, and the interior medium 𝑛. Our goal is to 

determine the cardinal elements of this compound system, based on these data. They 

are 

     . 

 

 The matrix method allows for an elegant analysis of centered optical systems 

composed of multiple subsystems. Taking advantage of the simple form of the transfer 
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matrix between principal planes (equation 176), in the case of the present system 

doublet, we have 

 

 

 

 

 

After calculating the product of matrices and identification, we obtain 

 

(216)     , 

 

 

(217)    . 

 

 Next we will replace the 21 elements with the corresponding focal distances, 

according to their general definition, equations (188), that is 

 

(218) 

   . 

From here we obtain the obvious relations 

 

(219)    . 

 

 From equation (216), we thus obtain the generalization of the Gullstrand 

formula (equation 210), namely 

 

 

(220) 

 

 

equations which allow us to determine the focal distances 𝑓1 , 𝑓2 . Next, based on 

equation (217), we obtain the generalized forms of equations (211), (212), namely 

 

(221)     , 

 

relations which allow us to determine the principal points 𝐻1, 𝐻2 from 𝐻1𝐻11 = 𝑑1, 

𝐻22𝐻2 = 𝑑2 , and the focal points 𝐹1 , 𝐹2 , from 𝐹1𝐻1 = 𝑓1 , 𝐻2𝐹2 = 𝑓2 . We can also 
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determine the positions of the focal points based on 

 

 

(222) 

 

 

which are generalized versions of equations (213). 

 We’ve now analytically determined the cardinal elements of the system 

doublet. Alternatively, they can also be determined graphically, by the use of the 

principal rays passing through the foci, as can be seen in Fig. 53. Thus, principal rays 

of the type 𝐼𝐽𝐹12𝐾𝐿𝐹2𝑀, which propagates from left to right, determine the cardinal 

points 𝐹2 , 𝐻2 . Similarly, principal rays of the type 𝑀𝑁𝐹21𝑂𝑃𝐹1𝐼 , which propagates 

from right to left, determine the cardinal points 𝐹1, 𝐻1. The formulae for the system 

doublet result directly from the geometry of Fig. 53. Based on the similarity of the 

triangles with the same hatching, we obtained the relations 

 

(223)    , 

 

(224)    , 

 

(225)    , 

 

which are variant expressions of 

equations (220), (221), and (222), 

respectively. Note that relations (222) 

and (225) are expressions of Newton’s 

formula (equation (183)) for pairs of 

conjugate points, which in this case 

are 𝐹1  and 𝐹21  relative to system 𝑆1 , 

and the pair 𝐹12, 𝐹2, relative to system 

𝑆2 . Evidently, geometric 

representations have the advantage of 

being intuitive. 

 In the special case most often encountered in practice, in which system 𝑆1 and 

𝑆2  are immersed in the same medium ( 𝑛1 = 𝑛 = 𝑛2 ), the system of notation is 

simplified (without the risk of generating confusion, we hope) by effecting the 

following replacements: 
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so that equations (220), (221), and (222) respectively become 

 

(226)     , 

 

(227)     , 

 

(228)     . 

 

 It is worth notice that equations (226) – (228) of the general doublet of coaxial 

systems generalize in the same form the equations of the thin lens doublet, that is, 

equation (210) – (213). 

 

 C. Focal and Afocal (Telescopic) Systems 

 

 Let us apply the theory elaborated above to the analysis of several systems of 

practical importance. First, we will consider the class of focal systems (𝑆21 ≠ 0), 

designed to form real or virtual images, with high values of transversal linear 

magnification. We will suppose the media at both ends to be identical, so that equation 

(184) is written as 

 

(229)     . 

 

 Let us first consider the photographic objective. It is a convergent optical 

system ( 𝑓 > 0 ) comprising a number of lens. An example would be the Tessar 

objective (Fig. 29.b), designed to form real images of exterior objects. At most times, 

the photographic objects are located at a great enough distance so that 𝑝1 ≫ 𝑓 > 0, and 

equation (229) leads to 

 

(230)     . 
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 The image is inversed vertically, and the magnification 𝑚𝑡 is proportional to 

the focal distance 𝑓 of the objective. If the image details are too small, they can no 

longer be distinguished because of the grained structure of the photographic material. 

For this reason, objectives with large focal distances must be used. This, however, 

requires lengthening the photographic camera, since the image basically forms within 

the image focal plane 𝐹2. 

 A significant enlarging of the focal distance, for photographing the details of 

objects located far away, while keeping the photographic camera at a relatively small 

length, is achieved with the use of the telephoto lens doublet, composed from the 

convergent system 𝑆1 (𝑓1 > 0) and the divergent system 𝑆2 (𝑓2 < 0). If we refer to 

equation (226), the magnification expression (230) becomes 

 

(231)     , 

 

where 𝑓1 , 𝑙 , 𝑝1 > 0 , and 𝑓2 < 0 . This 

leads to the condition 𝑙 = 𝑑 − 𝑓1 +

|𝑓2| > 0 , meaning |𝑓2| > 𝑓1 − 𝑑 > 0 , 

which must be met for values 𝑓 =

𝑓1|𝑓2| 𝑙⁄  as high as possible. Let us 

illustrate this matter with the 

numerical example 𝑓1 = 20 𝑐𝑚 , 𝑓2 =

−10 𝑐𝑚 , 𝑑 = 15 𝑐𝑚 , for which, by 

referring to equations (226) and (227), 

we obtain 𝑓 = 40 𝑐𝑚, 𝑑1 = 60 𝑐𝑚, 𝑑2 = −30 𝑐𝑚 (Fig. 54). Note that, although the focal 

distance of the system is large, the length of the photographic camera, equal to |𝑓2|, 

remains small (because the cardinal points of the telephoto lens are moved forward a 

great distance. In practice, the two components 𝑆1, 𝑆2 are achromatic doublets (see 

Chapter 2.7). 

 Let us next consider the compound microscope, which consists of a convergent 

objective (𝑓1 > 0) that forms an intermediate inversed image 𝑦𝑖𝑛𝑡, and a convergent 

ocular (𝑓2 > 0) serving as a magnifying glass, which forms the final virtual image. This 

principle is demonstrated in Fig. 55, where we’ve given as example a case in which, in 

arbitrary units, 𝑓1 = 17 , 𝑓2 = 20 , 𝑙 = 53 , so 𝑑 = 𝑓1 + 𝑓2 + 𝑙 = 90 ; introducing these 

values into equations (226), (227), or through graphical construction, we get 𝑓 ≈ −6.5, 

𝑑1 ≈ 29, 𝑑2 ≈ 34. Also, for 𝑝1 = 22, it follows that 𝑝2 = −120 and 𝑚𝑡 ≈ −19. Note that, 

in order to ensure a numerical aperture 𝑛1 sin 𝛾1 as high as possible, objects must be 

located very close to the first focal plane ( 𝐹11 ) of the objective, basically being 
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positioned in the first focal plane (𝐹1) of the system. 

 Generally, according to equations (226) and (229), we have 

 

(232)   , 

 

where the minus sign signifies that the final image is inversed. The approximation 

made in equation (232) is very useful, since we are only interested in the case in which 

𝑝2 𝑓⁄ = 𝑙|𝑝2| 𝑓1𝑓2⁄ ≫ 1. Next, from equations (205), (206), we obtain the magnification 

 

(233)    , (𝑙, 𝑓, 𝑓1, 𝑓2 in meters). 

 

 Compared to the magnification 

of the simple magnifying glass, 

formed out of a single lens, the 

magnification of compound 

microscope can be increased to a 

certain degree, by decreasing the focal 

distances of the objective and the 

ocular, and especially by increasing 

the distance between the inner foci 

(the standard values for many 

microscopes are 𝑙 = 150 ÷ 160 𝑚𝑚 ). 

Thus, for example, a medium 

magnification 𝐺 ≈ −160  is achieved 

with 𝑓1 = 𝑓2 = 16 𝑚𝑚  and 𝑙 =

160 𝑚𝑚 (𝑑 = 𝑓1 + 𝑓2 + 𝑙 = 192 𝑛𝑛); in 

this case, based on equations (226) and (227), we have 𝑓 = 1.6 𝑚𝑚  and 𝑑1 = 𝑑2 =

19.2 𝑚𝑚. Combinations of various objectives and oculars lead in practice to values 

within the interval |𝐺| ≈ 25 ÷ 3000. Theoretically, the magnification |𝐺| = 1 4⁄ 𝑓1𝑓2, 

equation (233), can reach any value. The useful magnification is, however, limited by 

the resolving power of the objective and the observer’s eye. Thus, considering that 

𝜃2 = 𝐺𝜃1 ≥ (𝛾1)𝑚𝑖𝑛
𝑒𝑦𝑒

, from equations (123) and (189), we get the maximum useful 

magnification 

 

    . 

 

 By considering (𝛾1)𝑚𝑖𝑛 
𝑒𝑦𝑒

≈ 1′ ≈ (1 3400⁄ )𝑟𝑎𝑑 , 𝜆0 ≈ 500𝑛𝑚 = 5 ∙ 10−5 𝑐𝑚 , and 
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|𝑝2| = 25 𝑐𝑚, we have |𝐺| ≈ 250 for the dry objective (𝑛1 sin 𝛾1 ≈ 1), and |𝐺| ≈ 375 for 

the immersion objective (𝑛1 sin 𝛾1 ≈ 1.5). In order to avoid fatiguing the eye by forcing 

it to its limit resolving power (≈ 1′), a magnification of a value around four times 

larger is recommended, which leads to the useful rule |𝐺| = 1000 ÷ 1500 . If the 

magnification excess is too great, there occurs the disadvantage of seeing the diffuse 

diffraction shapes (the Airy disks) associated to the luminous object points, with no 

other details. 

 Unlike the focal systems discussed above ( 𝑆21 ≠ 0 ), afocal, or telescopic 

systems (𝑆21 = 0) have infinite focal distances, and their cardinal points are located at 

infinity (according to equations (188)). As we’ve seen in Chapter 2.3, these systems 

have the general property of transforming any parallel beam into another parallel 

beam (Fig. 32), with an angular magnification 

 

(234)     , 

 

which has the same value for all conjugate rays, since 𝑚𝑎 is a constant of the system. 
According to the Abbe and Herschel stigmatism conditions (equations (98) and (102)), 
in paraxial approximation, we also have 
 
(235)     , 
 
(236)    , 
 
where we’ve taken into account the fact 
that, for afocal systems, det 𝑆 = 𝑆11𝑆22 = 1. 
It follows that the transversal and axial 
linear magnifications are also constants of 
the system, meaning they are independent 
of the object’s position. This result is 
evident in the geometric construction, as is 
illustrated in Fig. 56 for magnification 𝑚𝑡, 
with the help of a pair of conjugate rays 
parallel to the optical axis. 
 The expressions for linear magnification (235), (236) ca also be deduced through 
the matrix method. Thus, if we take into account the defining condition 𝑆21 = 0 for 
afocal systems, and the expressions (234) for angular magnification, the elements 
(156) – (159) of the transfer matrix between any two reference planes become 
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(237) 
 

 

 

 

 

 

 

so that the relationship between conjugate planes 𝑀12 = 0 can also be written as 

 

(238)     . 

 

 The transfer matrix between conjugate planes of afocal systems thus has two 

equivalent forms, given by equation (173) and equations (237), respectively, that is, 

 

(239)   , 

 

from which, by identification, results equation 

(235). Moreover, according to definition 𝑚𝑎 ≝

−𝑑𝑡2 𝑑𝑡1⁄ , by differentiating equation (238), we 

obtain equation (236). 

 Let us next consider the afocal doublet of 

coaxial systems (Fig. 57). In this case, the 

Gullstrand formula (220) for afocal systems 

(𝑆21 = 0, that is, 1 𝑓1⁄ = 1 𝑓2⁄ = 0) becomes 

 

     , 

 

or, if we take into account that 𝑓11 𝑓12⁄ = 𝑛1 𝑛⁄ , 𝑓21 𝑓22⁄ = 𝑛 𝑛2⁄ , equation (219), 

 

      , 

 

a condition equivalent to that of coincidence between the inner foci 𝐹12 and 𝐹21. 

 In order to calculate the magnifications, it is necessary to determine the 

diagonal elements 𝑆11, 𝑆22, and to impose the condition 𝑆21 = 0. We will first proceed 

to calculate the matrix product, according to Fig. 57, whereby 
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(240)   , 

 

an equation for which we know that 

 

(241) 

 

We thus obtain the generalized forms of equations (209), as 

 

 

 

(242) 

 

 

 

 

where all the elements of the compound system are linear functions of the reduced 

distance 𝑡 𝑛⁄  between the component systems. The condition 𝑆21 = 0  for the 

compound system to be afocal is satisfied for 

 

(243)     . 

 

If we introduce this reduced distance in equations (242), take into account equations 

(241), and replace the 21 elements with the corresponding focal distances, we obtain 

the matrix for the afocal compound system 

 

(244)    . 

 

 The general expressions for magnifications (234) – (236) in this case become 

 

 

 

(245) 
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 Compared to the analytical 

method presented above, Fig. 58 

illustrates the geometric construction of 

the image in an afocal doublet with the 

help of the principal rays passing 

through the foci 𝐹11, 𝐹12 = 𝐹21, 𝐹22 of the 

two component subsystems 𝑆1  and 𝑆2 . 

First, notice that the similarity between 

triangles 𝐼𝐻12𝐹12 and 𝐽𝐻21𝐹21 means that 

𝑚𝑡 ≝ 𝑦2 𝑦1⁄ = −𝑓21 𝑓12⁄ = 𝑐𝑜𝑛𝑠𝑡.  for any pair of conjugate points. Next, from the 

Lagrange-Helmholtz invariant 𝑛1𝑦1𝛾1 = 𝑛2𝑦2𝛾2 (equation (97)), we get 𝑚𝑢 ≝ 𝛾2 𝛾1⁄ =

𝑛1𝑦1 𝑛2𝑦2⁄ = −𝑛1𝑓12 𝑛2𝑓21⁄ = −𝑓11 𝑓22⁄ . Finally, if we successively apply Newton’s 

formula, equation (183), we have 𝜁1𝜁𝑖𝑛𝑡 = 𝑓11𝑓12 , −𝜁𝑖𝑛𝑡𝜁2 = 𝑓21𝑓22 , which we 

differentiate after eliminating 𝜁𝑖𝑛𝑡  and get 𝑚𝑎 ≝ −𝑑𝜁2 𝑑𝜁1⁄ = 𝑓21𝑓22 𝑓11𝑓12⁄ . Thus, 

we’ve used an intuitive geometrical approach to obtain the expression for 

magnifications (245). 

 In the special case in which the outer media and the intermediary medium are 

of the same kind (𝑛1 = 𝑛 = 𝑛2), we will use the notation 𝑓11 = 𝑓12 = 𝑓1, 𝑓21 = 𝑓22 = 𝑓2, 

so that the formulae (240), (245) for the afocal doublet are simply written as 

 

(246)      , 

 

(247) 

 

Note that these are identical to the formulae for afocal doublet of thin lenses, as we 

can confirm by using the matrix elements (209). 

 A relevant application of the afocal doublet is the refraction telescope, an 

optical instrument designed for observing objects located far away. Like the 

compound microscope, it consists of a convergent objective 𝑆1 (𝑓1 > 0) which gives 

and intermediary inversed image 𝑦𝑖𝑛𝑡, and a convergent or divergent ocular 𝑆2, which 

fulfils the role of a magnifying glass. Due to the very large distance to the observed 

object, unlike the microscope, the intermediary image is formed on the image focal 

plane (𝐹12) of an objective of large focal distance. Usually, the telescope functions as 

an afocal doublet, the mobile ocular being moved until the inner foci coincide (𝐹12 =

𝐹21), so that the eye may view the final virtual image, located at infinity, relaxed 

(unaccommodated). The following figures illustrate the telescope principle in three 

versions: the astronomical telescope, or the Kepler telescope (𝑓1 > 0, 𝑓2 > 0, so 𝑚𝑢 <
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0), in Fig. 59.a, the Galilei telescope (𝑓1 > 0, 𝑓2 < 0, so 𝑚𝑢 > 0), in Fig. 59.b, and the 

terrestrial telescope ( 𝑓1 > 0 , 𝑓𝑣 > 0 , 𝑓2 > 0 , so 𝑚𝑢 > 0 ), in Fig. 60, in which, for 

convenience, the component systems are represented by the thin lenses 𝐿1, 𝐿2, 𝐿𝑣, of 

focal distances 𝑓1 , |𝑓2| , 𝑓𝑣 , respectively, whose values give the ratio 7 : 3 : 4. The 

intermediary, or carrier, lens 𝐿𝒗  introduced in the terrestrial telescope is the 

convergent system that ensures image correction according to equation 𝑚𝑡 =

− 𝑓𝑣 𝜁1⁄ = − 𝜁2 𝑓𝑣⁄ = −1 (see equation (185)). Note that, at equal angular magnification 

(in these instances, |𝑚𝑢| = 7 3⁄ ), the Galilei telescope (𝑑 = 𝑓1 − |𝑓2|) is shorter, and the 

terrestrial telescope (𝑑 = 𝑓1 + 𝑓2 + 4𝑓𝑣) is longer than the astronomical telescope (𝑑 =

𝑓1 + 𝑓2). 

 Usually, due to the large 

distances at which the observed 

objects are located, the useful rays 

traversing the objective have a very 

small inclination 𝛾1  relative to the 

optical axis. In this case, the most 

important aberration is the axial 

chromatic aberration. For this reason, 

the refraction telescope objectives are 

basically an achromatic system of 

attached lenses, usually an 

achromatic doublet or triplet. 

 Oftentimes, instead of visual observation, photographic recording is preferred. 

For such applications, a system for forming a final, real image is installed as an 

extension coaxial with the telescope system, such as the telephoto doublet discussed 

earlier. 

 Another interesting application of the afocal doublet is the beam expander, used 

to enlarge the transverse section of a narrow laser beam. Fig. 59 illustrates how the 

laser beam is projected along the axis, from right to left. Note that the Galilei doublet 

(b) is preferable to the Kepler version (a) at high laser powers, in order to avoid 

ionization and the optical breakdown of the air in the inner, real focus. As can be 

deduced from the geometry of the figure, the linear rate of expansion of an axial beam 

(or, in general, of a paraxial one) is equal to the modulus of the angular magnification 

|𝑚𝑢| = |𝑓1 𝑓2⁄ |. 
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 D. Triplet Systems 

 

 We’ve heretofore analyzed the 

properties of forming images with the 

help of a doublet of coaxial diopter 

systems. It would be useful to extend 

the formulae thus obtained to those 

applicable in the case of triplet 

systems, and so on, for the additional 

possibilities of adjusting the distances 

between component systems that they afford. As in the case of the doublet, the 

formulae for the triplet system may be deduced from the corresponding transfer 

matrix 𝑆 = 𝑆3𝑇2𝑆2𝑇1𝑆1 . Let us illustrate by considering a triplet of thin lenses 

immersed in the same medium, such as the one presented in Fig. 60. In this case, the 

Gullstrand convergence formula (equation (210)) extends as 

 

(248)   , 

 

where 𝑑12  and 𝑑23  are the distances between the first and second lens, and that 

between the second and third, respectively. We will use this expression to describe the 

functioning principle of a "Zoom" (transfocator) system. By definition, such a system 

allows continual variation of its focal distance, so of its magnification, without 

changing the position of the image. This is most easily achieved in the case of a triplet 

of thin lenses, by changing the position of the middle lens relative to the other two, 

which remain fixed. If we use the notation 𝑑 for the distance between these two lenses, 

we have 𝑑12 = 𝑥 and 𝑑23 = 𝑑 − 𝑥, so that the expression for convergence, equation 

(248), is in this case written as 1 𝑓⁄ = 𝐹(𝑥) = 𝐴𝑥2 + 𝐵𝑥 + 𝐶, where A, B, and C are 

constant. The equation 𝐹(𝑥) = 0 usually admits two roots, 𝑥1 and 𝑥2, without which 

the convergence 1 𝑓⁄ ≠ 0. In order to achieve large and variable focal distances, the 

system is designed so that it may allow ranges around these roots. An additional 

condition is usually imposed, that the roots should be identical, so that moving the 

middle lens around the position 𝑥1 = 𝑥2 should have symmetrical consequences. 
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 E. Reflection (Catoptric) Systems 

  

 Unlike the dioptric systems we’ve heretofore considered, the reflectant 

(catoptric) systems have the important advantage of being free of chromatic 

aberrations. Moreover, for large instruments, it is much easier to produce mirrors than 

lenses. These advantages were recognized in constructing reflection telescopes, of 

which the main versions (Newton, Herschel, Gregory, Cassegrain) are illustrated in 

Fig. 61. A concave parabolic mirror (principal mirror) serves as objective. A small 

mirror is interposed across the paths of the rays reflected by this objective (secondary 

mirror), and moves the system’s focal plane 𝐹 into a position convenient for the use of 

a visual instrument (the ocular), for mounting photographic plates or film, for 

photoelectric receptors, or for spectral analysis. The only exception is the Herschel 

telescope, whose focus 𝐹  is moved directly, through a slight inclination of the 

principal mirror (of suitably long focal distance). The Newton telescope (also called 

the side view telescope) employs a plane secondary mirror which deviates the beam 

at a 90° degree angle to the optical axis. In the case of the Gregory telescope, the focus 

of the parabolic principal mirror coincides with the first focus of a concave, elliptical 

secondary mirror, so that the focus 𝐹 of the entire system forms in its second focus, 

and the beam exits axially through a 

small circular orifice cut out in the 

center of the principal mirror. The 

Cassegrain telescope works in a 

similar fashion, the only difference 

being that the secondary mirror is 

hyperbolic and convex. These 

telescopes use the property of 

rigorous stigmatism of the 

Cartesian surfaces of reflection (the 

paraboloid, ellipsoid, and 

hyperboloid), as we have seen in 

Chapter 1.3. The foci of these 

surfaces are not aplanatic, however, 

so the angular aperture through 

which clear images may be obtained 

only reaches several arc minutes. 

The Schmidt optical system (Fig. 

61) employs an ingenious solution 
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to eliminate the spherical aberrations of the spherical (not parabolic) principal mirror, 

by the use of a suitable correcting refringent blade, whose surface is planar and 

polished to a slightly toroidal curve. In this way, the marginal and paraxial rays are 

focused onto the same point 𝐹, where the spherical support for photographic film is 

located. Due to its very large angular aperture, of about 25°, the Schmidt telescope is 

an ideal instrument for observing the night sky. This system is composed of both 

reflecting (catoptric) and refringent (dioptric) elements, which places it in the category 

of catadioptric systems. To this category also belongs the Maksutov telescope (Fig. 

61), which uses a convex or concave secondary mirror, and whose spherical 

aberrations related to the spherical principal mirror are corrected with the use of a 

meniscus lens, which is much more easily produced than the aspherical surfaces of 

the Schmidt correcting blade. 

 As in the case of the microscope (see the Abbe formula, equation (123)), the 

diffraction of light imposes a lower limit for the angular aperture 𝛾1 between the two 

source points located at great distances (for example, that between the components of 

a double star) that can still be resolved by the telescope objective, which is 

 

(249)     , 

 

where 𝐷 is the diameter of objective lens or mirror. The telescope angular resolving 

power, defined as 1 (𝛾1)𝑚𝑖𝑛⁄ , is thus proportional to 𝐷 𝜆⁄ . 

 Let us illustrate by first considering the eye, which behaves as a refraction 

telescope objective when viewing objects located far away. If we consider the 

pupillary diameter of the relaxed eye in daylight to be  𝐷 ≈ 2 𝑚𝑚, and 𝜆 ≈ 500 𝑛𝑚, 

based on equation (249), we obtain (𝛾1)𝑚𝑖𝑛 ≈ 1′ . It is remarkable that this value 

coincides with the physiological limit given by the retinal granular structure, equation 

(189). This means that the human eye can perceive the maximum of information 

allowed by the fundamental limit (equation (249)) imposed by the wavelike nature of 

light. For comparison, the following table gives the diameter of several telescopes and 

their minimum angular aperture for 𝜆 ≈ 500 𝑛𝑚. The largest diameters are those of 

the Yerkes telescope, among refraction telescopes, and the Caucasus telescope, from 

among reflection telescopes. 

Objective D (cm) (𝛾1)𝑚𝑖𝑛 Observatory 

eye 0.2 1′  

lens 12 1′′  

parabolic mirror 50 0.24′′ Bucharest 
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lens 75 0.16′′ Pulkovo, Russia 

lens 102 0.12′′ Yerkes, USA 

parabolic mirror 258 0.047′′ Mount Wilson, USA 

parabolic mirror 508 0.024′′ Mount Palomar, USA 

parabolic mirror 600 0.020′′ Caucasus 

 In practice, refraction telescopes are used to measure angles and observe the 

surfaces of planets, while reflection telescopes are used particularly in spectral 

analysis of light coming from the heavenly bodies. The usable resolving power at low 

altitudes does not surpass value corresponding to (𝛾1)𝑚𝑖𝑛 ≈ 0.5′′ , because of the 

refractive index fluctuating along the trajectories of light rays passing through Earth’s 

atmosphere. That is why the location at which the great astronomical observatories 

are built is chosen based on the optical qualities of its atmosphere. The interference of 

atmospheric perturbation can only be completely avoided by installing telescopes 

onboard space shuttles, or on the surface of the Moon. 

 In theory, the angular magnification 𝑚𝑢 = −𝑓1 𝑓2⁄  (equation (247)) can reach 

infinitely high values, depending on how great the focal distance 𝑓1 of the objective is, 

relative to the focal distance 𝑓2 of the ocular. In practice, the length of the telescope is 

determined by the focal distance 𝑓1 of the objective. The useful angular magnification 

of any one telescope is, however, limited by the resolving power of its objective and 

of the observer’s eye. Therefore, considering that 𝛾2 = 𝑚𝑢𝛾1 ≥ (𝛾1)𝑚𝑖𝑛
𝑒𝑦𝑒

, based on 

equations (189) and (249), the maximum useful angular magnification is 

 

     . 

 

 If we take (𝛾1)𝑚𝑖𝑛
𝑒𝑦𝑒

≈ 1′ ≈ (1 3,400⁄ ) 𝑟𝑎𝑑 , and 𝜆 ≈ 5,000 Å = 5 ∙ 10−5 𝑐𝑚 , we 

have |𝑚𝑢| ≈ 5𝐷 (𝑐𝑚). However, in actual use, the eye suffers considerable strain when 

observing details at the limit of angular resolution, so that an angular magnification 

four times greater is recommended, wherefore we obtain the useful rule |𝑚𝑢| ≈

20𝐷 (𝑐𝑚). Further increasing the angular magnification past this value no longer 

improves the visibility of the object, but only that of the diffuse Airy diffraction disks. 

 

 2.6 Diaphragms 

 

 In studying centered optical systems, until now we’ve only approached the 

issue of image formation, whether they be real or virtual, in convenient positions for 

recording or visual observation. Other important properties of images, such as 
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brightness and view field, are dependent on limiting the light beam by the use of 

diaphragms, that is, of apertures in opaque screens, or of the very borders of the lenses 

and mirrors that constitute the optical system. For the sake of convenience, we will 

next analyze the issue of diaphragms with circular aperture, in paraxial 

approximation. 

 Let us thus consider a 

pair of conjugate planes 

intersecting the optical axis in 

object point 𝑃1 and image point 

𝑃2, respectively. By definition, 

the diaphragm of aperture 𝚫 

employed in the system is that 

diaphragm or those borders of 

the optical elements (lenses, 

mirrors) that most limit the 

beam of light coming from the 

axial object point 𝑃1 (see Fig. 62 

for the general case and Fig. 63 

for the special case of a triplet 

of thin lenses). In order to 

determine which of the 

system’s diaphragm is the one 

of aperture corresponding to 

point 𝑃1 let us first consider the 

transfer matrix 𝑀𝑃1Δ  between 

the reference plane containing 

𝑃1 and the plane of a certain diaphragm with an aperture of radius 𝑅. 

 Transfer equation (161) 𝑦2 = 𝑀11𝑦1 + 𝑀12Γ1, for a ray passing through 𝑃1 (𝑦1 =

0, 𝑛1 = 1, Γ1 = 𝛾1) and along the aperture’s edge (𝑦2 = 𝑅) is written as 𝑅 = 𝑀12𝛾1, that 

is, 

      . 

 

 According to the definition, it thus follows that the aperture diaphragm is that 

diaphragm or those lens borders for which 𝛾1, that is, the ratio 𝑅 𝑀12⁄ , is smallest. This 

diaphragm, indicated by the symbol Δ in Fig. 62 and 63, and the corresponding angle 

𝛾1, termed angular aperture (on the object’s side), is particularly important, since it 

determines the flux of light collected by the system, and therefore image brightness, 
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as well as its resolving power (see the numerical aperture 𝑛1 sin 𝛾1 of the microscope 

objective, equation (123)). The image of the aperture diaphragm formed by the front 

part of the system (system 𝑆1 in Fig. 62 and the first lens in Fig. 63) is called entrance 

pupil (Π1), and the image formed by the hind part (system 𝑆2 in Fig. 62 and the last 

two lenses in Fig. 63) is termed exit pupil (Π2). Obviously, the exit pupil is the image 

of the entrance pupil formed by the entire system. Note that the angular aperture 𝛾1 

of the cone of light entering the system is determined by the entrance pupil, and the 

angular aperture (on the side of the image), or the projection angle, 𝛾2, by the exit 

pupil. 

 Another way of determining the entrance pupil, equivalent to the one already 

described, is to consider the images of all the diaphragms and lens borders formed 

through the corresponding anterior lenses; the image with the smallest angle 𝛾1(𝑃1) is 

the entrance pupil, and the associated physical element is the aperture diaphragm of 

the system for the point 𝑃1 considered. Alternatively, we can form the images of all 

the diaphragms and lens borders through the posterior lenses, and determine the exit 

pupil as the image with the smallest 𝛾2(𝑃2) angle. Generally, if we change the position 

of object point 𝑃1 and that of its conjugate image point 𝑃2, another aperture diaphragm, 

and so another conjugate pair of pupils, could become operative. If the frontal lens or 

a diaphragm anterior to the frontal lens has a sufficiently small aperture, then it itself 

is the aperture diaphragm and also the system’s entrance pupil. In the case of 

telescopes, this role is usually played by the borders of the objective lens, so that its 

image, formed by the ocular, is the system’s exit pupil. As we have seen (equation 

(249)), the diameter 𝐷 of the objective determines the angular resolving power of the 

telescope. 

 Positioning and enlarging the pupils of optical systems has great practical 

importance. In the case of visual systems, the observer’s eye is positioned at the center 

of the instrument’s exit pupil, which must correspond to the entrance pupil of the eye, 

that is, to the image of the iris’s aperture formed by the transparent cornea and the 

aqueous humor. In order to comfortably align the eye with the instrument, its exit 

pupil must be slightly larger than the eye’s entrance pupil. For example, telescopes 

designed for daytime observations must have an exit pupil of 3 − 4 𝑚𝑚, and at least 

8 𝑚𝑚 in the case of nighttime telescopes. In fact, the term "pupil" comes from the 

requirement that the exit pupil of visual instruments should be approximately equal 

to the entrance pupil of the eye. 

 Let us next consider the photographic objective, the telephoto lens, and the 

telescope objective, designed to form the image of distant objects. In this case, the area 

of the image is proportional to the square of the objective focal distance, 𝑓2 (according 
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to 𝑦2 = −(𝑦1 𝑝1⁄ )𝑓 , equation (230)). On the other hand, the light flux collected is 

proportional to the area of the objective’s aperture (to the area of the entrance pupil), 

that is, to 𝐷2. Therefore, the density of the light flux within the image plane varies as 

(𝐷 𝑓⁄ )2. The ratio 𝐷 𝑓⁄  is termed relative aperture, and its inverse, f number: 

 

"f number"≝ 𝑓 𝐷⁄ . 

 

 Because the photographic exposure time is proportional to (𝑓 𝐷⁄ )2 , the 

"f number" is also called lens speed. For example, the "f number" of a lens of focal 

distance 5 𝑐𝑚 and aperture 2.5 𝑐𝑚 is thus 2, and is written as 𝑓 2⁄ . The diaphragms of 

photographic camera objectives are marked with "f numbers", namely 1; 1.4; 2; 2.8; 4; 

5.6 ; 8 ; 11 ; 16 ; 22 . Consecutive numbers increase by the multiplying factor ≈ √2 , 

which indicates a decrease of the relative aperture by the factor ≈ 1 √2⁄ , and a 

decrease of the light flux density within the image plane by ≈ 1 2⁄ . Thus, for example, 

the same amount of luminous energy passes through a 𝑓 1.4⁄  diaphragm in (1 500⁄ ) 𝑠, 

through a 𝑓 2⁄  diaphragm in (1 250⁄ ) 𝑠, and through a 𝑓 2.8⁄  diaphragm in (1 125⁄ ) 𝑠. 

 The aperture diaphragm and the associated pupils play an important role in 

the formation of images of spatial objects. Let us illustrate by considering an objective 

system whose diaphragm aperture of diameter D is the entrance pupil Π1 (Fig. 64). Let 

us observe the image 𝑃2 of an axial object point 𝑃1 through a plate of opaque glass as 

a focalizing screen. If necessary, we will need to place this screen right within the 

image plane 𝑃2. We move the screen back and forth by a distance of ±𝑑𝜁2 in order to 

adjust the image (by looking at it with our bare eyes). However, it is not essential, and 

will tolerate a minimum circle of diffusion whose diameter can reach the value 𝛿 ≈

(𝛾1)𝑚𝑖𝑛
𝑒𝑦𝑒

 250 𝑚𝑚 = (1 3400⁄ ) 250 𝑚𝑚 ≈ 0.07 𝑚𝑚  without experiencing a significant 

loss of image clarity. 

 Evidently, if we use a 

magnifying glass to adjust the image, 

the diameter 𝛿  of the circle of 

minimum diffusion will be several 

times (𝐺) smaller than when doing it 

with the naked eye. In this case, there 

will be a tolerance interval, termed 

depth of field or focalization depth 

in the image space 
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(250)     , 

 

where in order to obtain the last expression we’ve used the Lagrange-Helmholtz 

theorem 𝑦1𝛾1 = 𝑦2𝛾2, equation (97), the expression for magnification 𝑦2 𝑦1⁄ = − 𝑓 𝜁1⁄ , 

equation (183), and we’ve supposed that the observed object is sufficiently far away 

so that 𝜁1 = 𝑝1 − 𝑓 ≈ 𝑝1(≫ 𝑓) and 2𝛾1𝑝1 = 𝐷. It thus follows that the depth of field in 

the image space is inversely proportional to the angular aperture and with the 

diameter of the entrance pupil. There is a depth of field within the object space |𝑑𝜁1| 

corresponding to the depth of field |𝑑𝜁2| in the image space. If we refer to Newton’s 

formula 𝜁1𝜁2 = 𝑓2 (equation (18)), and to the relation 𝜁2 ∙ 𝑑𝜁1 + 𝜁1 ∙ 𝑑𝜁2 = 0, as well as 

to the expression for |𝑑𝜁2| above, we get 

 

(251)     . 

 

We thus discover that the depth of field in the object space is proportional to the 

square of the distance to the object, and inversely proportional to the diameter of the 

entrance pupil (a fact which is qualitatively known by any amateur photographer). In 

conclusion, the depth of field effect is determined by the finite value of the diameter 

𝛿  of the circle of minimum diffusion, and by that of the eye’s angular resolution 

(𝛾1)𝑚𝑖𝑛
𝑒𝑦𝑒

≈ 1′  (equation (189)). This value also indicates the limit to which the 

aberrations of optical instruments are worth correcting. 

 The marginal and central rays are especially important to designing optical 

systems. Rays originating in an axial object point which effectively pass by the borders 

of the aperture diaphragm are called marginal rays (Fig. 63). All marginal rays enter 

the system along a straight line passing by the borders of the entrance pupil and exits 

the system along a conjugate line passing by the borders of the exit pupil. The ray 

originating in an extra-axial object point which effectively passes through the center 

𝑂 of the aperture diaphragm is called the central ray of that point (Fig. 63). This ray 

enters the optical system along a line passing through the center 𝑂1 of the entrance 

pupil and exits the system along a conjugate line passing through the center 𝑂2 of the 

exit pupil. Unlike the aperture diaphragm, which defines the marginal rays and 

controls the flux of light passing through the system, the field diaphragm is that 

diaphragm or those lens borders which most limit the beam of central rays coming 

from the objective points, and thus controls, as through a window, the system’s view 

field. The image of the field diaphragm formed on the anterior side of the system is 

termed entrance window (skylight) (Λ1), and the one formed on the posterior side, 
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exit windows (skylight) (Λ2 ), Fig. 62. Obviously, just like the pupils, these two 

windows are located in conjugate positions relative to the entire optical system. 

 A systematic method of determining the field diaphragm entails forming the 

images of all the diaphragms and borders through the front lenses; the image seen in 

the center of the entrance pupil with the smallest angle (the acceptance angle, or the 

object angular field, 𝜃1 ) is the entrance window, and the corresponding physical 

element is the field diaphragm. Alternatively, we can form the images of all the 

diaphragms and borders through the posterior lens, and determine the exit window 

as the image seen in the center of the exit pupil, with the smallest angle (the image 

angular field 𝜃2); the corresponding physical element is the field diaphragm. 

 The view field in any object 

plane containing the axial point 𝑃1 is 

defined as the multitude of points 

within the plan that send light rays 

into the optical system (Fig. 65.a). 

These points are therefore situated 

within the circle of center 𝑃1  and 

radius 𝑃1𝑆 , and are separated into 

two categories: points analogous to 

the axial point 𝑃1, such as the extra-

axial point 𝑄 , which send conical 

light beams into the system that 

wholly fill the entrance pupil, and points analogous to the extra-axial point 𝑅, whose 

beams are partially obstructed by the entrance window Λ1, through the window effect, 

or vignetting (Fig. 65.b). The points situated within the circle of radius 𝑃1𝑄 constitute 

the full aperture field, whose conjugate in the image plane is most luminous, and the 

points situated within the circular ring between radii 𝑃1𝑄 and 𝑃1𝑆 form the contour 

field, along whose conjugate in the image plane illumination quickly decreases from 

the its high value on the inner circle to zero on the outer circle. Within the contour 

field, there is an intermediary circle of radius 𝑃1𝑅 (corresponding to the angular field 

𝜃1), along whose conjugate illumination is approximately at half its value in the center 

of the (total) view field. In conclusion, due to the window effect, the object and image 

view fields don’t have sharply defined borders. To eliminate this inconvenience from 

optical instruments, the field diaphragm is placed in the plane of an intermediary 

image, so that the entrance window is located within the object plane, and the exit 

window, in the image plane. In this way, the entire view field becomes a full aperture 

field, with almost uniform illumination, and the contour field is reduced to clear 
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circular borders. 

 Let us consider in more 

detail the distribution of the 

illumination of a real image 

formed by an optical centered 

system within the full 

aperture field. In order to do 

this, we will suppose that the 

object is a small plane surface 

of area 𝑑𝑆1 , perpendicular to 

the optical axis, which radiates according to Lambert’s law, that is, its radiance 

(brightness, illumination) 𝐿1 does not depend on the angle 𝛾 (see Chapter 1.3, Fig. 66). 

The light flux emitted by the axial object point 𝑃1 in the solid angle 𝑑Ω𝑃1
= 2𝜋 sin 𝛾 𝑑𝛾 

is 

 

(252)   . 

 

 By integrating between 𝛾 = 0 and the angular aperture 𝛾1, we get the energy 

flux passing through the entrance pupil, that is, 

 

(253)     . 

 

 We similarly obtain the conjugate energy flux passing through the exit pupil, 

directed at the axial image point 𝑃2, that is, 

 

(254)     . 

 

 Assuming the optical system satisfies the Abbe sine condition, and that the 

element of surface 𝑑𝑆2 is the aplanatic image of the element 𝑑𝑆1, we also have the 

relation (equation (106)) 

 

(255)     . 

 

 As we’ve already seen in Chapter 1.3, the energy balance condition 𝑑𝐹2 = 𝑇𝑑𝐹1, 
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where 𝑇 ≤ 1  is the transmission (transparency) factor of the system * , along with 

equations (253) – (255), lead us to the Clausius theorem 

 

(256)     . 

 

It follows that, if 𝑛1 = 𝑛2, the image radiance cannot surpass the object radiance. 

 From equations (254), (256), we obtain the illumination (the density of energy 

flux) within the image plane 

 

(257)    . 

 

 For sufficiently small angular apertures (𝛾2 ≪ 1), the solid angle under which 

the exit pupil is seen from axial image point 𝑃2  is Ω𝑃2
≅ 𝜋|𝑂2𝑃2|2 sin2𝛾2 |𝑂2𝑃2|2⁄ =

𝜋sin2𝛾2. Therefore, equation (257) becomes 

 

(258)     . 

 

This expression is valid for illumination in an axial image point 𝑃2. If we repeat the 

process for an extra-axial image point 𝑄2, we get 

 

(259)     , 

 

where Ω𝑄2
 is the solid angle under which the exit pupil is seen from point 𝑄2, and 𝜑2 

is the angle between the central ray 𝑂2𝑄2 and the optical axis. If we use the symbol Σ 

for the area of the exit pupil, we have 

 

    , 

 

from which, if we take into account that |𝑂2𝑃2| = |𝑂2𝑄2| cos 𝜑2, we obtain 

 

     . 

 

                                                           
* We consider 𝑇 to be independent of 𝜆. The transmission factor in the case of incidence normal or 
almost normal to air-glass or glass-air separating surfaces is 𝑇 = 0.96. For a thin glass lens immersed in 
air we thus have 𝑇 = 0.962 ≈ 0.92. If we also take into account light absorption in optical glass (𝐴 =
0.98 per centimeter traversed), we conclude that, in the case of a 1 𝑐𝑚 thick glass lens immersed in air, 
we have 𝑇 = 0.90. 
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Based on this relation, the general expression (259) for the illumination of an aplanatic 

image of a Lambertian source can now be written as 

 

(260)     . 

 

 This "law of fourth power cosine" leads to a quite rapid decrease of image 

illumination relative to the increase of the angle of field 𝜑2. In practice, this effect may 

be countered and image illumination can be homogenized by violating the condition 

for aplanatism and deliberately introducing coma aberrations. If we increase the angle 

of field to the value 𝜑2 ≅ 𝜃2 , characteristic of the contour field, illumination will 

decrease drastically due to the vignetting effect. 

 

 2.7 Chromatic Aberrations 

 

 Until now we’ve considered the behavior of monochromatic light, so that, in 

the formulae of geometrical optics, the refractive index n appears as a single constant 

pertaining to the material. However, because of the light dispersion phenomenon, the 

refractive index depends on the wavelength. For the majority of transparent optical 

materials, such as inorganic glasses, melted quartz, organic glass (plexiglass), isotropic 

crystals (fluorine or calcium fluoride, lithium fluoride, sodium chloride, potassium 

bromide, etc.) or colorless liquids, the refractive index is given in theory by the 

Sellmeier formula, 

 

(261)     , 

 

where 𝜔 = 𝑘0𝑐 = 2𝜋𝑐 𝜆0⁄ , and 𝐴𝑖 , Ω𝑖  are the material constants. In practice, the 

empirical dispersion formulae are preferred, which depend linearly on the material 

constants (A, B, C, D), such as the Cauchy formula, 

 

(262)     , 

 

or, for more exact interpolations, the Conrady formula 

 

(263)     . 

 

The Herzberger formula is an excellent empirical formula used for the wide spectrum 

between 3,650 Å and 10,000 Å, affording within the visible spectrum a precision of ±1 
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to the fifth decimal. It is written as 

 

(264)   . 

 

In general, the refractive indices of optical media within the visible spectrum slowly 

decrease from blue to red (normal dispersion), as is illustrated in the table below for 

two types of glasses from among the approximately 250 types manufactured by the 

Schott company. Optical glasses are usually described by two criteria, namely the 

mean refractive index, 𝑛𝑔, corresponding to a wavelength at the center of the visible 

spectrum, and the mean dispersion 𝛿𝑛 = 𝑛𝑏 − 𝑛𝑟 , corresponding to refractive index 

variation across a suitable spectrum. For convenience in calculating chromatic 

aberrations, the dispersion of optical materials is determined using Abbe’s number, 

 

(265)     𝑉 ≝
𝑛𝑦−1

𝑛𝑏−𝑛𝑟
≈

𝑛−1

𝛿𝑛
> 0, 

 

where 𝑛𝑏, 𝑛𝑦, 𝑛𝑟 are the refractive indices of blue, yellow, and red, corresponding to 

certain precisely known intense spectral lines, namely: 

 

 (266) 

 

  

 

 
Spectrum 

 
Light source 

Line 
Fraunhofer 

name 

 

𝜆0(Å) 

crown glass 
BK 7 

flint glass 
SF 11 

1 UV 
2 UV 
3 violet 
4 blue 
5 blue 
6 blue 
7 blue 
8 blue 
9 blue 
10 blue 

Ar laser 
Ar laser 
Hg arc 
Hg arc 
HeCd laser 
Ar laser 
Ar laser 
Ar laser 
Ar laser 
Cd arc 

 
 

h 
g 
 
 
 
 

 
F′ 

3,511 
3,638 
4,047 
4,358 
4,416 
4,579 
4,658 
4,727 
4,765 
4,800 

1.53894 
1.53648 
1.53024 
1.52669 
1.52611 
1.52462 
1.52395 
1.52339 
1.52310 
1.52283 

 
 

1.84211 
1.82518 
1.82259 
1.81596 
1.81307 
1.81070 
1.80945 
1.80834 

11 blue 
 

H arc F (Hβ) 4.861 = 𝜆𝑏 𝑛𝑏 = 
1.52238 

1.80645 

the 𝐹(𝐻𝛽) hydrogen line, 𝜆𝑏 = 4,861.327 Å, 

the 𝑑(𝐷3) helium line, 𝜆𝑦 = 5,875.618 Å,  

the 𝐶(𝐻𝛼) hydrogen line, 𝜆𝑟 = 6,562.816. 
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12 blue 
13 green 
14 green 
15 green 
16 green 
17 green 

Ar laser 
Ar laser 
Ar laser 
Ar laser 
Nd laser 
Hg arc 

 
 
 
 
 
e 

4,880 
4,965 
5,017 
5,145 
5,320 
5,461 

1.52224 
1.52165 
1.52130 
1.52049 
1.51947 
1.51872 

1.80590 
1.80347 
1.80205 
1.79880 
1.79480 
1.79190 

18 yellow 
 

He arc d (D3) 5,876 = 𝜆𝑦 𝑛𝑦 = 1.5168 1.80645 

19 yellow 
20 red 
21 red 

Na arc 
HeNe arc 
Cd arc 

D 
 

C′ 

5,893 
6,328 
6,438 

1.51673 
1.51509 
1.51472 

1.78446 
1.77862 
1.77734 

22 red 
 

H arc C (Hα) 6,563 = 𝜆𝑟 𝑛𝑟 = 1.51432 1.77599 

23 red 
24 IR 
25 IR 
26 IR 
27 IR 
28 IR 
29 IR 
30 IR 
31 IR 

ruby laser 
ruby laser 
ruby laser 
GaAlAs laser 
Cs arc 
GaAs laser 
Hg arc 
Nd laser 
InGaAsP laser 

 
 
 
 
s 
 
t 

6,943 
7,860 
8,210 
8,300 
8,521 
9,040 
10,140 
10,600 
13,000 

1.51322 
1.51106 
1.51037 
1.51021 
1.50981 
1.50894 
1.50731 
1.50669 
1.50371 

1.77231 
1.76559 
1.76360 
1.76312 
1.76202 
1.75971 
1.75579 
1.75444 
1.74888 

(data given in Melles Griot, Optics Guide 3, 1985) 

 Referring to the table and definition (265), we obtain 𝑉 = 64.12 for BK glass and 

𝑉 = 25.76 for SF 11 glass. As 𝑉 decreases, the 𝛿𝑛 dispersion of the refractive index 

increases. Note that we may replace the mean refractive index 𝑛𝑦 in equation (265) 

with any value 𝑛  in the visible spectrum, without the maximum variation of 𝑉 

surpassing around 2%. 

 Traditionally, optical glasses are separated into two main categories, namely 

flint glass (F), for which 𝑉 varies within the 20 – 50 interval, and crown glass (K), for 

which the value varies between 50 and 70. All commercial optical glasses have an 

index (catalog code) made up of two numbers rounded to the third decimal, namely 

(𝑛𝑦 − 1) 10𝑉⁄  (but multiplied by 1,000 for the sake of convenience). Thus, for example, 

the indices for glasses mentioned in the table above are 785/258 for super-dense SF 

11 flint glass and 517/641 for BK 7 borosilicate crown glass. 
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 Through the refractive 

index, the elements of the S matrix 

and the cardinal elements of optical 

systems are linked to the 

wavelength. Obviously, in the case 

of monochromatic light, such as 

light filtered through a 

monochromator or singular 

frequency laser light, any object 

gives a single image. If, however, the light is polychromatic, the optical system no 

longer forms a single image, but a multitude of monochromatic images of different 

positions and sizes (Fig. 67), so that the image obtained through their overlapping has 

iridescent borders, and is no longer sharply defined. This inconvenient effect, caused 

by the dispersion of light, is termed chromatic aberration or chromatism. We can 

distinguish between axial or positional chromatic aberrations and transverse or size 

chromatic aberrations. 

 These aberrations can be more or less completely eliminated by combining 

lenses whose contributions to the effect oppose each other. Let us now examine this 

issue in paraxial approximation. In general, the perfect achromatization of an optical 

system for two wavelengths 𝜆𝑏 and 𝜆𝑟 involve the elimination of all corresponding 

variations of S matrix elements, that is: 

 

(267)     , 

 

where 𝛿𝑛 = 𝑛𝑏 − 𝑛𝑟. Usually, this system of equations is not compatible, so that (axial 

and transverse) chromatic aberrations cannot be simultaneously eliminated. That is 

why, in most practical situations, we have to be satisfied with a partial 

achromatization, and go in favor of positional or size image precision, depending on 

the purpose of the instrument. 

 Let us first consider the simple case of a thin lens. According to equations (199), 

(200), only element 𝑆21 = −𝑛1 𝑓⁄  and convergence 

 

(268)    , 

 

depend on the refractive index. For brevity, in equation (268) we have used the symbol 

𝐾 to refer to the algebraic sum of the curvatures of diopter components. Evidently, a 

single thin lens cannot be achromatized because 𝛿𝑆21 𝛿𝑛⁄ = −𝐾𝑛1 ≠ 0. Alternatively, 
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by differentiating equation (268), we get 

 

(269)     , 

 

or 

 

(270)     
𝑓𝑟−𝑓𝑏

𝑓𝑦
=

𝑛𝑏−𝑛𝑟

𝑛𝑦−1
=

1

𝑉
> 0. 

 

 Therefore, the axial dispersion 

𝑓𝑟 − 𝑓𝑏 = 𝑓𝑦 𝑉⁄  of foci cannot be null, 

since V is always greater than 0. It is 

positive for convergent lenses (𝑓𝑦 > 0), as 

is shown in Fig. 68, and negative for 

divergent lenses (𝑓𝑦 < 0). The aberration 

sign depends on the prismatic shape of 

convergent or divergent lenses, 

aberrations becoming thinner or thicker depending on the distance from the optical 

axis. The extension of the focus axial spectrum is presented in exaggerated 

proportions in Fig. 68, since, for example, in the case of a type of crown glass of 𝑉 =

60 we have 𝑓𝑟 − 𝑓𝑏 = 𝑓𝑦 60⁄ . Also, note that we may replace the mean focal distance 𝑓𝑔 

in equation (270) with any value 𝑓 in the visible spectrum. 

 The chromatic aberration is easily discernible in the case of polychromatic light 

due to the halo surrounding the real image formed on an observation screen. Thus, 

for example, if we consider a punctual source of "white" light, placed at infinity on the 

optical axis, a blue dot appears at focus 𝐹𝑏, surrounded by a halo passing into red, and 

at focus 𝐹𝑟 there is a red dot surrounded by a halo passing into blue. The best "white" 

image appears within an intermediary place (Σ) in the form of a circular disk of 

minimum diffusion (Fig. 68). 

 Unlike thin lenses, the focal distance of thick lenses can be achromatized for 

two wavelengths. In order to do this, there is a condition we may obtain based on 

equation 𝛿(1 𝑓⁄ ) 𝛿𝑛 = 0⁄ , equivalent to 𝛿𝑆21 𝛿𝑛⁄ = 0 , and the expression for the 

convergence of the thick lens, equation (193): 

 

(271)     . 

 

 Since thickness g is essentially positive, this condition can be met only if 𝑟1 >
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𝑟2 . Unfortunately, the other two conditions of system (267), and so, the 

achromatization of cardinal points, equation (195), can no longer be simultaneously 

achieved. 

 Let us study the conditions for achromatization of the thin lens doublet in more 

detail. We shall start with the condition for achromatization of element 𝑆21 and for the 

convergence, as given by the Gullstrand formula 

 

(210)     . 

 

 From equation 𝛿(1 𝑓⁄ ) 𝛿𝑛 = 0⁄ , we immediately derive the condition 

 

(272)      , 

 

in which 𝑉1, 𝑉2 usually correspond to two different types of glass, that is, 

 

(273)    . 

 

 In the exceptional case in which the doublet lenses are made out of the same 

type of glass, that is, when 𝑉1 = 𝑉2, equation (272) becomes 

 

(274)      , 

 

a condition which is taken into account when constructing oculars (see Chapter 2.5). 

As in the case of thick lenses, achromatization is only partial, since dispersion at the 

cardinal points cannot be simultaneously compensated for. However, the 

achromatization of focal distance 𝑓 of the system also involves achromatization of 

magnification 𝐺 = 1 4⁄ 𝑓 (equation (206)). This apparent achromatization is achieved 

due to the fact that the images of various colors, although distinct from one another 

(in terms of position and size), appear to the eye under the same visual angle 𝜃2, and, 

thus, in perspective, they ultimately overlap on the retina. 

 An important method of doublet achromatizing entails attaching together thin 

lenses made out of different types of glasses, thus obtaining what is known as a 

contact achromatic doublet. In this case, 𝑑 = 0 and 𝑉1 ≠ 𝑉2, so that equations (210), 

(272) become 

 

(275)      , 
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(276)      . 

 

 Note that in the case of the contact doublet, 𝑆11 = 𝑆22 = 1 , according to 

equation (201) or equation (209), for 𝑑 = 0, so that the principal planes are not affected 

by dispersion, and coincide with the plane tangent to the common vertex of 

component diopters, while the focal planes are fixed by the achromatized focal 

distance through condition (276). Therefore, the achromatization of the focal distance 

is the perfect achromatization with respect to position and size of the contact doublet. 

If we consider equations (275) and (276), we notice that, in order for the achromatic 

doublet to not be an instance of the trivial case of null convergence, 1 𝑓⁄ = 0, which 

would imply that 𝑓1 = −𝑓2, it is necessary that 𝑉1 ≠ 𝑉2, that is, that the two component 

lenses be made of different types of glasses. Moreover, since 𝑉1, 𝑉2 > 0, it follows that 

the two focal distances 𝑓1, 𝑓2 must be of different signs, meaning one lens should be 

convergent, and the other, divergent. It would be interesting to note that, because of 

the imprecise measuring of refractive indices of his time, inevitable since spectral lines 

had not yet been discovered, Newton erroneously concluded that 𝑉 is the same for all 

glasses, and so that chromatic aberrations cannot be in principle eliminated (with the 

exception of the trivial case in which 𝑓1 = −𝑓2). It is for this reason that he devoted his 

time, successfully, to constructing the reflection telescope, since purely reflective 

systems would avoid chromatic aberrations (the law of reflection does not refer to the 

refractive index). The first achromatic doublet was patented by London based optician 

John Dollond (1758), and made a decisive impact on the perfection of refraction optical 

systems. 

 By solving equations (275), (276) for the convergences of the lens components, 

we obtain the relations necessary for calculating the contact achromatic doublet, 

namely: 

 

(277)    , 

 

(278)    . 

 

 Thus, by imposing a certain value for the convergence 1 𝑓⁄  of the doublet, by 

choosing the appropriate optical glasses, that is, 𝑛𝑦1
, 𝑛𝑦2

, 𝑉1, 𝑉2, and referring to the 

two expressions above, we may calculate the convergences 1 𝑓1⁄ , 1 𝑓2⁄  of the 

component lenses. In order to avoid values for 𝑓1, 𝑓2 and for curvature radii of the 

lenses that are too small, the value of the difference |𝑉1 − 𝑉2| must be sufficiently high. 

Let us illustrate this procedure by calculating a contact achromatic doublet with 𝑓 =



 

Ioan Ioviţ Popescu 
Optics 

I. Geometrical Optics 

111 

 

0.5 𝑚, whose lenses are made from BK 1, 510/635, crown glass, and F2, 620/364, flint 

glass, respectively. If we introduce the values 1 𝑓⁄ = 2 𝑚−1 and 𝑉1 = 63.5, 𝑉2 = 36.4 

and refer to the two expressions above, we get 1 𝑓1⁄ = 4.686 𝑚−1  and 1 𝑓2⁄ =

−2.686 𝑚−1. Obviously, the sum of component lens convergences must be equal to 

the convergence of the doublet, equation (275). 

 Usually, the adjacent surfaces of the contact doublet may not have the same ray 

curvature, in which case contact is achieved either at the center only, or only at the 

borders. For any given 𝑓1, 𝑓2, 𝑛𝑦1
, 𝑛𝑦2

, the first expressions in (277) and (278) are two 

relations between four ray curvatures, so two of them can be randomly chosen. In 

practice, this considerable liberty is used to minimize geometrical spherical and coma 

aberrations, taking advantage of the fact that their effects in the case of convergent 

and divergent lenses are of opposite sign. 

 A simple achromatic 

doublet is the Fraunhofer 

achromat (Fig. 69), composed 

of an equi-convex crown lens 

( 𝑟12 = −𝑟11 ), in complete 

contact (𝑟12 = 𝑟21) with a flint, 

basically planar-concave lens. 

The two elements of this 

doublet are usually bound with a transparent adhesive (such as polyester). Using the 

numerical data from the above example (1 𝑓1⁄ = 4.686 𝑚−1, 1 𝑓2⁄ = −2.686 𝑚−1, 𝑛𝑦1
=

1.510, 𝑛𝑦2
= 1.620) and the imposed relations between ray curvatures, referring to the 

first expressions in (277), (278), we get 𝑟11 = −𝑟12 = −𝑟21 = 21.8 𝑐𝑚  and 𝑟22 =

−381.9 𝑐𝑚. It is usually recommended that the frontal lens should be the one made 

out of crown glass, because of its higher resistance to wear.  

 We have heretofore considered achromatization conditions for only two 

wavelengths 𝜆𝑏, 𝜆𝑟. In the case of the contact doublet, this implies equality between 

the corresponding focal distances, 𝑓𝑏 = 𝑓𝑟  and coincidence of foci 𝐹𝑏 , 𝐹𝑟  (Fig. 69). 

However, for other wavelengths 𝜆𝑥, the corresponding focal distance 𝑓𝑥 deviates from 

the value 𝑓𝑏 = 𝑓𝑟 , imposed for achromatization, and so represents the so-called 

secondary spectrum, or residual chromatic aberration. In order to determine the 

distribution of foci 𝐹𝑥 for this spectrum, let us differentiate equation (275), and use 

equation (269) on the component lenses, that is, 

 

(279)    , 
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in which case we will this time consider 𝛿𝑓 = 𝑓𝑏 − 𝑓𝑥 and 𝛿𝑛 = 𝑛𝑏 − 𝑛𝑥. Therefore, 

 

(280)  , 

 

in which, for the sake of convenience, we’ve introduced the modified Abbe number: 

 

(281)      , 

 

and the relative partial dispersion: 

 

(282)     . 

 

 If we refer to equations (277) and (278), we may rewrite the last expression in 

equation (280) as 

 

(283)     , 

 

in which form it constitutes the secondary spectrum equation. This equation allows 

calculating the relative difference between focal distance 𝑓𝑥 and the achromatization 

focal distance 𝑓𝑏 = 𝑓𝑟, with the help of partial dispersions 𝑃𝑥1
, 𝑃𝑥2

, and depending on 

wavelength 𝜆𝑥 . Figure 70 illustrates these calculations for the contact achromatic 

doublet made out of BK 7 crown (lens 1) and SF 11 flint glass (lens 2), using the 

refractive indices listed in the table at the beginning of this chapter. The secondary 

spectrum appears folded onto itself, with a minimum focal distance 𝑓𝑚𝑖𝑛 

corresponding to the 

radiation of wavelength 𝜆𝑚, 

in the vicinity of yellow line 

𝐷3  (𝜆𝑦 ). With the exception 

of 𝑓𝑚𝑖𝑛 , foci corresponding 

to the various 

monochromatic radiations 

coincide two by two. What is 

remarkable is that the 

deviation of foci in the 

visible spectrum from the 

achromatization value 𝑓𝑏 =

𝑓𝑟  may be neglected in 
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numerous applications. Indeed, based on Fig. 70, we may conclude, for example, that 

|𝑓𝑦 − 𝑓𝑏| 𝑓⁄ ≈ 1 1800⁄  (the minimum deviation within the visible spectrum of 

commercial achromatic doublets is around 1 2000⁄ ). Considering this result, it is 

obvious that the extension of the secondary spectrum suggested by Fig. 69 is greatly 

exaggerated. For comparison with this performance of the achromatic doublet, let us 

recall that the relative extension of the spectrum of the foci of a single lens is 

(𝑓𝑟 − 𝑓𝑎) 𝑓𝑦⁄ = 1 𝑉⁄ , equation (270), whose value is greater by a multiplier of the order 

of tens. 

 According to equation (283), reduction of the secondary spectrum can be 

achieved, in principle, by choosing a pair of glasses whose difference of partial 

dispersions 𝑃𝑥1
− 𝑃𝑥2

 is as small as possible, and/or whose difference of Abbe 

numbers 𝑉1 − 𝑉2  is as great as possible. Unfortunately, the first method proves 

impracticable, since existing optical glasses seem to have a 𝑃 difference approximately 

proportional to their 𝑉  difference, so that selecting glasses does not significantly 

influence the extension of the secondary spectrum. The second method is more useful. 

It involves associating a glass of small 𝑉 with the fluorine crystal, which has a very 

large value for 𝑉 (𝑉 = 95.4). This last method, as we have seen (equations (277) and 

(278)), also has the additional advantage of the focal distances 𝑓1, 𝑓2, and so of the 

lenses’ rays curvatures, being relatively large, so that the refraction angles and 

geometrical aberrations are relatively small. By using both methods described above, 

the glass and fluorine doublet can by achromatized for three wavelengths, 𝜆𝑏, 𝜆𝑟, 𝜆𝑥, 

(𝑓𝑏 = 𝑓𝑟 = 𝑓𝑥). 

 The thin lens triplet, made out of three different glass types, is much more 

easily achromatized for three wavelengths, 𝜆𝑏, 𝜆𝑟, 𝜆𝑥, or for four wavelengths, 𝜆𝑏, 𝜆𝑟, 

𝜆𝑥, 𝜆𝑧. In the last instance, the system is called superachromat, and it practically allows 

the complete annihilation of the secondary spectrum in the entire visible domain, and 

in the near infrared and ultraviolet domains. Let us lastly determine the conditions for 

the achromatization of the superachromatic triplet. We start from the convergence 

expression: 

 

(284)     , 

 

and then impose the equalities 𝑓𝑏 = 𝑓𝑟 = 𝑓𝑥 = 𝑓𝑦. By differentiating equation (284), we 

get: 

 

(285)     , 
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or, if we use equation (269) for component lenses: 

 

(286)    . 

 

 For 𝛿𝑛 = 𝑛𝑏 − 𝑛𝑟, we get: 

 

(287)     , 

 

an equation which for the triplet generalizes condition (276). Similarly, for 𝛿𝑛 = 𝑛𝑏 −

𝑛𝑥, we have: 

 

 

(288) 

 

 

and for 𝛿𝑛 = 𝑛𝑏 − 𝑛𝑧, 

 

 

(289) 

 

 

 Conditions (287), (288), (289) can be simultaneously satisfied by any triplet of 

glasses that, in graph (𝑃𝑥, 𝑃𝑧), are positioned along a straight line, that is, for which 

 

(290)   , 

 

where 𝑎, 𝑏 are constants. Many triplets composed of the glasses available today satisfy 

this condition. 

 

 2.8 Geometrical Aberrations 

 

 We’ve considered centered optical systems in paraxial approximation, so that 

for any object point 𝑄1 there is a corresponding conjugate image point 𝑄2. In other 

words, within the paraxial domain, the optical system transforms a conical light beam 

with its apex in 𝑄1, into a conical light beam with its apex in 𝑄2, and, respectively, a 

spherical wave with its center in 𝑄1 into a spherical wave with its center in 𝑄2. If, 
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however, the light beam originating in object point 𝑄1  is no longer paraxial, the 

corresponding emerging rays no longer converge in the paraxial (Gaussian) punctual 

image 𝑄2, but pierce the Gaussian image plane in various points 𝑄2
∗, and, respectively, 

the emerging wave deviates from its ideal spherical shape (Fig. 71). These deviations 

from the ideal punctual image, caused by extra-paraxial rays, are termed geometrical 

aberrations, or monochromatic aberrations, since they appear even when the light is 

perfectly monochromatic. 

 Because of 

geometrical aberrations, 

every object point 𝑄1 

corresponds to a diffuse 

light spot within the 

Gaussian image plane 𝑄2 , 

which is limited by an 

aberration curve, 

determined by marginal 

rays. Usually, geometric 

deviations from the paraxial 

image 𝑄2 can be described quantitatively using ray aberration vectors, 𝑄2𝑄2
∗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗, and the 

path difference 𝛿, termed wave aberration, between a real (deformed) wavefront and 

a reference Gaussian sphere, with its center in the paraxial image point 𝑄2. To better 

understand these notions, let us consider the real wavefront and the Gaussian 

reference sphere passing through the 𝑂2 center of exit pupil Π2 (Fig. 71). It will next be 

advantageous to consider a Cartesian system of coordinates 𝑄2𝑥𝑦𝑧, with its origin in 

𝑄2, and with the 𝑄2𝑧 axis oriented along direction 𝑂2𝑄2, so that the equation for the 

reference sphere is simply written as 

 

(291)     , 

 

where 𝑅 = |𝑂2𝑄2|. Next, we will consider the real wavefront to deviate from this 

sphere, so that its equation is 

 

(292)    , 

 

where 𝛿 = 𝛿(𝑃, 𝑄2) = 𝛿(�⃗�, ℎ⃗⃗)  represents the wave aberration in point 𝑃(𝑥, 𝑦, 𝑧) =

𝑃(�⃗�, 𝑧 ≈ 𝑅) relative to the reference sphere in Gaussian image point 𝑄2(0,0,0) = 𝑄2(ℎ⃗⃗). 
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Note that variable �⃗� determines the point of intersection between emerging rays and 

the exit pupil plane, while variable ℎ⃗⃗ represents the measure of the inclination of the 

central paraxial ray relative to the optical axis. Since this inclination is supposed to be 

small, the plane 𝑥𝑄2𝑦 basically represents the Gaussian image plane. Furthermore, we 

will consider 𝑄2𝑥 to be practically parallel to ℎ⃗⃗ (Fig. 71). 

 For the following considerations we will take into account the fact that the 

considered optical system has axial symmetry, so that the aberration of wave 𝛿(ℎ⃗⃗, �⃗�) 

generally only depends on the scalar product variables ℎ⃗⃗2, �⃗�2, and ℎ⃗⃗ ∙ �⃗�, which are 

invariant relative to rotation around the optical axis, meaning that 𝛿 =

𝛿(ℎ2, 𝜌2, ℎ𝜌 cos 𝜃), where 𝜃 is the angle between vectors �⃗� and ℎ⃗⃗. Usually, in order to 

evince the primary geometric aberrations (the Seidel aberrations), it is sufficient to 

serially expand the wave aberration 𝛿  relative to the rotation invariants up to the 

second order term, that is, 

 

 (293) 

 

 

  

 

 

followed by the grouping together of the coefficients of identical terms. These 

coefficients are constants whose value depends on the structure of the optical system 

considered and the position of the object plane. 

 Any emergent light ray 𝑃𝑃0 would satisfy the equation of the real wavefront 

normal, namely 

 

(294)     , 

 

in which, according to equation (292), 

 

(295)    . 

 

Keeping in mind that for a given 𝑄2(ℎ⃗⃗), 𝛿 = 𝛿(�⃗�) = 𝛿(𝑥, 𝑦), it follows from equation 

(294) that 

 

δ(h2,ρ2,hρcosθ) = a0 + b1h2 + b2ρ2 + b3hρcosθ + 1/2[c11h4 + 

+ c12h2ρ2 + c13h2 · hρcosθ + c21ρ2 · h2 + c22ρ4 + 

+c23ρ2 · hρcosθ + c31hρcosθ · h2 + c32hρcosθ · ρ2 + 

+ c33(hρcosθ)2] + ... , 
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(296)     , 

 

or, in other words, that 

 

(297) 

 

 

 In the following lines we will consider the displacement (the defocusing) 𝑧0 of 

the Gaussian image relative to plane 𝑧 = 0 to be very small, so that we may ignore the 

product 𝑧0 ∙ 𝛿. We will also make the approximation 𝑧 ≈ 𝑅 in all instances, since the 

distances along the optical axis to the wavefront at the location of the exit pupil are 

virtually equal to the radius of the reference sphere. 

 Under these conditions, the equations at (297) transform into 

 

 

(298) 

 

 

Obviously, within the plane of the Gaussian image (𝑧0 = 0), we have 

 

 

(299) 

 

 

which constitute the components of the vector of ray aberration, 𝑄2𝑄2
∗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗. 

 Because the expression of 𝛿, equation (293), is given in polar coordinates, we 

will apply the transformations 

 

(300) 

 

so that 

 

(301)  

 

 

and the relations at (298) can be written as 
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(302) 

 

 

By differentiating, and grouping the constants together, from the equations at (293), 

(302), we obtain the final results 

 

 

(303) 

 

 

in which we’ve made the replacements B = 2R𝑐22, F = −R(𝑐23 + 𝑐32)/2, C = R𝑐33/2, 

D=R(𝑐12 + 𝑐21), E = −R(𝑐12 + 𝑐31)/2. 

Note that the 𝑧0  terms have been obtained based on the arbitrary defocusing 

introduced by us relative to the Gaussian image plane (𝑧0=0). 

 Let us first discuss the significance of the first order 𝜌  and ℎ  terms, which 

appears because of the 𝑏 coefficient. Thus, for the 𝑏2 coefficient, in plane 𝑧0 = 0 we 

have 

 

 

 

 

so we obtain the circle 

 

 

 

 In order for this circular spot of light to be reduced to a point, we translate the 

ideal plane so that 𝑥0 = 𝑦0 = 0, that is, we move it to the position 𝑧0 = −2𝑏2𝑅2, which 

can be interpreted as either a correction of the longitudinal focalization error, or, if 𝑏2 

is dependent on 𝜆 , as an axial chromatic aberration. As for the 𝑏3  coefficient, it 

signifies the transverse translation of the focalizing point within plane 𝑧0 = 0 to 𝑥0 =

𝑅𝑏3ℎ, and can also be interpreted either as a correction of the lateral focalization error, 

or, if 𝑏3 is dependent on 𝜆, as a transverse chromatic aberration. 

 The geometric aberrations appear in the equations at (303), expressed through 

the third order terms of 𝜌 and ℎ, which are identified by the Seidel coefficients B, F, C, 

D, E (in traditional notation). In order to facilitate classification, we will analyze the 
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individual contribution of each term while ignoring the contribution of the rest. By 

doing so, we will obtain five types of third order aberrations, namely: the spherical 

aberration (𝐵 ≠ 0), coma aberration (𝐹 ≠ 0), astigmatism (𝐶 ≠ 0), field curvature 

(𝐷 ≠ 0), and distortion (𝐸 ≠ 0). 

 The spherical aberration (𝐵 ≠ 0), is the only third order aberration that exists 

along the optical axis (ℎ = 0). Let us first consider the ideal plane 𝑧0 = 0, in which case, 

 

 

 

 

from which, by eliminating 𝜃, we get 

 

(304)     . 

 

 Therefore, the 

aberration curve is a circle 

with its center in the 

paraxial image point 𝑄2 

and a radius equal to 𝐵𝜌3, 

and constitutes the 

transverse spherical 

aberration (Fig. 72). The 

image of any object point 

is therefore a circular 

diffusion spot whose 

radius is proportional to 

the cube of the exit pupil radius. Obviously, this aberration does not discomfort the 

eye if its diameter of 2𝐵𝜌3 corresponds to a smaller viewing angle than the angular 

magnification (𝛾1)𝑚𝑖𝑛
𝑒𝑦𝑒

≈ 1′. 

 Any ray exiting at a distance 𝜌 from the center of the exit pupil will generally 

intersect the 𝑂2𝑧 axis in a point other than the 𝑄2 point of paraxial ray convergence. If 

we refer to the condition for intersection, 𝑥0 = 𝑦0 = 0, within a plance 𝑧0 ≠ 0, based 

on the equations at (303), we obtain 
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which give the axial spherical aberration (see Fig. 72) 

 

(305) 

 

The sign of this aberration can be positive or negative. Thus, for example, in the case 

of a convergent lens, 𝑧0 < 0, and in that of a divergent lens, 𝑧0 > 0, from which fact 

we may deduce the possibility of reducing the spherical aberration by combining 

these two types of lens. Usually, according to equations (304), (305), the spherical 

aberration only depends on the 𝜌 variable, which constitutes a measure of the angular 

aperture 𝛾, hence the term aperture aberration. 

 All the other geometric aberrations indicated by equations (303) appear 

because of light beams that are skewed relative to the optical axis ( ℎ ≠ 0). They 

therefore only affect the images of extra-axial points, and are of a first, second, or third 

order relative to the ℎ variable, which is a measure of the viewing angular field 𝜃. We 

may gather these aberrations caused by skewed light beams under the umbrella term 

field aberrations. From among these we will first consider the coma aberration (𝐹 ≠

0). In this case, within the ideal plane 𝑧0 = 0, we have 

 

 

 

based on which, by eliminating the angle 2𝜃, we obtain the aberration curve equation 

 

(306)  , 

 

which is an equation for a circle with its center in 

(−2𝐹ℎ𝜌2, 0) and a radius of 𝐹ℎ𝜌2 . Consequently, 

because of the chromatic aberration, the light rays 

exiting through the exit pupil ring of radius 𝜌 form 

a circle within the Gaussian image plane, above or 

below point 𝑄2 , depending on the sign of 

coefficient F (Fig. 73). The overlaying of these 

circles, corresponding to the entire surface of the 

exit pupil, constitute the image of an object point 

within said plane. The image thus obtained has an 

elongated shape, similar to the tail of a comet, hence the term coma. 
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 Note that, because of the 

dependence of coordinates 𝑥0 

and 𝑦0 on the angle 2𝜃, a single 

rotation along the circle 𝜌 =

𝑐𝑜𝑛𝑠𝑡. from within the exit pupil 

plane leads to a double rotation 

along the circle in the Gaussian 

image plane. Moreover, the 

envelopes of circles from within 

the Gaussian image plane are 

two line segments that intersect each other in the paraxial image point 𝑄2, under an 

angle of 2𝛼, where 

 

 

 

as can be seen in Fig. 73. 

 

 Unlike coma aberrations, in whose case the images of points extend across a 

plane perpendicular to the optical axis (Fig. 73), astigmatism causes them to extend 

along it (Fig. 74). 

 Next we will discuss astigmatism (𝐶 ≠ 0) and field curvature (𝐷 ≠ 0), which 

take place in combination. If we consider these aberrations within a plane of ray 

interception 𝑧0 = 𝑐𝑜𝑛𝑠𝑡., based on equations (303), we have 

 

 

 

 

from which, if we eliminate the angle 𝜃, we obtain the equation for the aberration 

curve 

 

(307) 

 

 

 The image of an extra-axial object point 𝑄1  thus appears as a spot of light 

bordered by the ellipsis given by equation (307), centered along the axis 𝑂2𝑧 and with 

the axes parallel to the coordinate axes 𝑂2𝑥 and 𝑂2𝑦 (Fig. 74). If we translate the plane 

𝑧0 = 𝑐𝑜𝑛𝑠𝑡., the image remains elliptical, but its shape and dimensions change. For 
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two plane positions, the ellipsis degenerates into linear segments (focal lines), one of 

which is parallel to 𝑂2𝑥, and the other to 𝑂2𝑦. By eliminating the ellipsis semi-axes in 

equation (307), we obtain the position 𝑧0 = 𝑧𝑠 of the sagittal focal line plane, formed 

by the equatorial rays, and the position 𝑧0 = 𝑧𝑡  of the tangential focal line plane, 

formed by the meridional rays*, namely 

 

(308) 

 

 The difference 𝑧𝑠 − 𝑧𝑡 = −2𝐶𝑅ℎ2 constitutes a measure of the astigmatism (𝐶) 

for the object point 𝑄1 considered (with given 𝑅, ℎ). For 𝑧0 = (𝑧𝑠 + 𝑧𝑡) 2⁄ , we obtain 

the highest degree of light ray concentration within a circular disk, termed circle of 

minimum diffusion (confusion), or pseudo-focus (Fig. 74). 

 Let us next consider a 

straight line normal to the 

optical axis object point 𝑃1 . 

Every point along this line has 

a corresponding pair of focal 

lines as image. Through 

rotation around the optical 

axis, we obtain a transverse 

plane object and its image, a 

curved surface, the envelope of 

focal lines, termed caustic. 

According to the equations at (308), this surface has two sheets, namely the sagittal 

field (the geometrical location of positions 𝑧𝑠) and the tangential field (the geometrical 

location of positions  𝑧𝑡 ), which have the shape of rotational paraboloids with a 

common vertex in the paraxial image point 𝑃2  (Fig. 75). This deviation from the 

Gaussian image plane is termed field curvature, or Petzval curvature. 

 The last third order aberration is distortion (𝐸 ≠ 0). According to the equations 

at (303), within the Gaussian image plane 𝑧0 = 0 we have 

 

 

                                                           
* The meridional plane is defined by the object point 𝑄1 and the optical axis. 
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 Since it is independent of 𝜌  and 𝜃 , 

distortion no longer determines the spread of 

light around the position of the ideal image 

𝑄2 , but only its transverse translation to 

another point by a value proportional to ℎ3. 

The image of a spatially extended object 

remains clear, but deformed. The only 

exception is the lines from within the object 

plane that intersect the optical axis. All the 

other lines have curves as images, specifically convex curves if 𝐸 < 0 and concave 

curves if 𝐸 > 0, with respect to the optical axis. These “pillow” and “barrel” shaped 

distortions are easily highlighted using a simple figure, of finite spatial extension, such 

as the rectangular web (Fig. 76). Distortion is troublesome if precise extra-axial 

measurements are required. 

 The primary geometric aberrations described above appear when light rays 

leave the paraxial domain, and are caused by the finite value of the aperture (the 

variable 𝜌) and/or of the view field (the variable ℎ). The proportions between these 

aberrations are given by the Seidel coefficients, that, for a given objet position, depend 

on the shape, thickness, the distances between, and the refractive indices of the optical 

system components, and the position of the diaphragms. Explicitly and analytically 

determining the Seidel coefficients relative to the multitude of parameters on which 

they depend is an extremely difficult task, even for simple optical systems. 

 In order to illustrate, let 

us consider a diaphragmed 

thin lens (Fig. 77, b), so that it 

is traversed by light rays only 

in the vicinity of the optical 

axis 𝑂𝑧 , where the lens 

behaves almost like a plate 

with planar, parallel faces, 

and so the angles of incidence 

and emergence are practically equal (𝜃1). 

 Let us calculate the astigmatism for this lens by twice applying the Young 

formulae for spherical diopters (see Chapter 2.1, equations (115) and (116)), in this 

instance the light beam originating from an extra-axial object point 𝑄1 (Fig. 77a). Thus, 

if we consider the extreme immersion media to be identical (𝑛1 = 𝑛3) and if we write 

the relative refractive index of the lens as 𝑛 = 𝑛1/𝑛2 , for a fan of meridional rays 
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(within the plane 𝑄1𝑂𝑧), equation (115) leads to 

 

 

(309) 

 

 

which added together give the 𝑡 position of the tangential field: 

 

(310)    . 

 

 Similarly, for a fan of equatorial (sagittal) rays, equation (117) leads us to 

 

 

(311) 

 

 

which added together give the 𝑠 position of the sagittal field: 

 

(312)    . 

 

 Particularly, for 𝜃1 = 𝜃2 = 0, the oblique abscises 𝑙, 𝑠, 𝑡 become regular abscises 

(oriented along the optical axis), namely 𝑙0, 𝑠0, 𝑡0, so that equations (310) and (312) 

lead us to the thin lens formula 

 

(313)    . 

 

 Next we will consider a spherical 

object surface 𝐴𝑂𝐵 of radius 𝑂𝐶 = 𝜌, situated 

symmetrically relative to the optical axis 𝑂𝑧 

(Fig. 78). If we use the segment notations 

𝐴𝑃 = 𝑙, 𝑂𝑃 = 𝑙0, and ∠𝐴𝑃𝑂 = 𝜃1, we have 

 

 , 

 

or, if we approximate cos 𝜃1 to 1 − (𝜃1
2 2⁄ ), 
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 If we serially expand the radical of the second member and take the first two 

terms separately, we obtain the following expression: 

 

     . 

 

 Rearranging the terms, we get: 

 

(314)     , 

 

which is valid in the vicinity of the optical axis. We will use this formula for the 

curvature 1 𝜌⁄  of the object surface, as well as for the curvatures 1 𝜌𝑡⁄  and 1 𝜌𝑠⁄  of the 

tangential and sagittal fields, respectively, that is, 

 

 

(315) 

 

 

in which the same angle 𝜃1  is used, since the angle of emergence from the lens is 

virtually equal in value to the angle of incidence (Fig. 77b). If we next introduce 

expressions (314) and (315) into equations (310) and (312), and take into account the 

relations at (313) and the approximations 𝜃1 = 𝑛𝜃2 , cos 𝜃 ≈ 1 − (𝜃2 2⁄ ) , and 

1 cos 𝜃2⁄ ≈ 1 + 𝜃2, we obtain the simple result 

 

 

(316) 

 

 

 Particularly, for a plane object surface (𝜌 → ∞), we have 

 

(317) 

 

 Notice that for any given lens, the field curvatures have the same orientation, 

the curvature 1 𝜌𝑡⁄  of the tangential field being higher than the curvature 1 𝜌𝑠⁄  of the 

sagittal field (also see Fig. 75). The field curvatures for the convergent lens (1 𝑓⁄ > 0) 

and the divergent lens ( 1 𝑓⁄ < 0 ) are opposite in orientation. There is thus the 

possibility of compensating for the astigmatism and field curvature, by designing 
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centered systems of diaphragmed thin lenses attached together. In this case, the field 

curvatures are algebraically summed up as 

 

 

(318) 

 

 

where we’ve used the notation 1 𝑓⁄ = ∑ 1 𝑓𝑖⁄𝑖  for the system convergence. 

 The condition 𝜌𝑡 = 𝜌𝑠  for eliminating astigmatism therefore implies the 

condition 1 𝑓⁄ = 0, meaning the system must be afocal (and therefore equivalent to a 

plane-parallel plate), in which case the equations at (318) become 

 

(319)    . 

 

 If we also require the elimination of the field curvature, in which case 1 𝜌𝑡⁄ =

1 𝜌𝑠⁄ = 0, we obtain the Petzval condition, 

 

(320)      . 

 

 Note that the aberration can also be softened in systems of finite focal distance 

(1 𝑓⁄ ≠ 0) as long as they satisfy the Petzval condition (320). In this case, 𝜌𝑠 = 3𝜌𝑡 = 𝑓, 

as can be deduced from the equations at (318). 

 Usually field curvature of a certain degree is tolerated in visual instruments, 

because the eye has the ability to adjust to it. The requirements for the objectives of 

photographic or projection apparatuses are however much higher. If meeting the 

Petzval condition is not enough, or if it cannot be met, the field can be significantly 

corrected within the axial domain by the use of a field flattener positioned in the 

immediate vicinity of the image plane. The curvature of such a lens is usually small 

so as to not induce aberrations. 

 Here are several other results concerning thin lens aberrations (with 

demonstrations omitted): 

 In the case of objects located far away, the curvature radii at which spherical 

aberration is minimized are:* 

 

 

                                                           
* See V.V. Bianu, Optica geometrică, Ed. Tehnică (Technical Press), Bucharest, 1962 (§ 126, pp 208 – 215). 
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(321) 

 

 

and those at which coma aberration is minimized are: 

 

 

(322) 

  

 

 Lens designers are confronted with the necessity of an optimal compromise 

between criteria (321) and (322). 

 In order to minimize chromatic and geometrical aberrations and find an 

optimum configuration relative to the use intended, the designer of optical systems 

must manipulate a multidimensional multitude of variables (refractive index, 

geometrical shape, thickness, distance, diaphragm, etc.). We’ve presented a simple 

example in paragraph 2.7, where we showed how chromatic aberrations can be 

compensated for by combining lenses of different types of glass. Said lenses display 

inverse spherical aberrations that depend of their shapes. They also display inverse 

coma aberrations that depend on the lens shapes as well, but in a different fashion. 

That is why the degrees of freedom available when achromatizing the system are often 

used as much as possible to also compensate for spherical and coma aberrations. 

 There are also widely used methods by which the third order aberrations 

previously discussed are partly counterbalanced by manipulating corresponding 

higher order aberrations. For such refined adjustments, as well as for the automatic 

optimization of optical system parameters in general, elaborate calculation software 

has been developed for the precise calculation and depiction of the paths of light rays 

passing through given systems and for the generation of spot diagrams, displaying 

the points of intersection between rays and various given planes perpendicular to the 

optical axis. That software allows users to start from a regular polygon of points 

(usually a square) within the entrance pupil plane and see how the densities of points 

of intersection with any ulterior plane (such as the Gaussian image plane or the planes 

in its proximity) are distributed. This constitutes a direct measure of the distribution 

of the luminous flux in that plane. 

 But starting with aberration classical theory, founded by Hamilton (with his 

characteristic function) and Bruns (with his eikonal function), and continuing to the 

present day, analytical methods of studying the geometrical properties of wavefronts 
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have been and are still under intense investigation. 

 Unlike planar, 

spherical, or cylindrical 

waves, which arise 

occasionally, common 

wavefronts are generally 

incredibly complicated. 

Although they appear 

even and approachable 

enough the further they 

are from the focalized 

area, wavefronts 

considered nearer this 

space become more and 

more difficult to visualize 

and almost impossible to 

analyze. The Twyman-Green interferometer (Fig. 79) is a very powerful device for 

precise optical measurements, especially of wavefronts generated by the optical 

components. It is a version of the Michelson interferometer, and consists of a point 

source S of monochromatic light positioned at the focus of a lens 𝐿1 and a perfectly 

spherical mirror 𝑂2 with its center C positioned at the Gaussian focus of the lens or 

optical system to be tested. If said system is free of aberrations, the wave reflected in 

𝑂2  back towards the beam splitter D will be perfectly planar, and the field of 

interference with the planar wave reflected in mirror 𝑂1  will appear uniform. If, 

however, aberrations deform the wavefront passing through the analyzed system L 

and back, then the deformity will be clearly indicated through the interference fringes 

(lines of equal phase difference from the reference planar wave). The interference 

image can be viewed with the naked eye or can be photographed. Fig. 79 illustrates 

the Twyman-Green interferograms associated with spherical (a) and coma (b) 

aberrations, corresponding to the paraxial focal plane, and with astigmatism, 

corresponding to the minimal diffusion circle plane (c), to the plane of a focal line (d), 

or to some other plane (e). Any local variation of optical path, even of the magnitude 

of wavelength fractions, caused by imperfections of the system surfaces or by the 

existence of spaces of non-homogeneous refractive index, lead to the deformation of 

the wavefront and generate corresponding fringes in the interference field, which 

allow those irregularities to be localized. The method discussed affords the significant 

advantage of the complete wavefront shape being displayed immediately, as the 
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structures displayed to the left of the meridional plane interferograms (a) and (b) 

illustrate. As is usually the case, the performance of the interferometer significantly 

increases if the conventional monochromatic light source is replaced with a laser light 

source. 

 We’ve constantly discussed lenses and optical systems involving spherical 

surfaces and the geometrical aberrations inherent only to them. Due to the relative 

facility and high precision with which spherical surfaces are fashioned, their use has 

spread most widely, in contrast to the Cartesian surfaces (see Chapter 1.3). Still, 

stigmatic aspherical surfaces and elements are frequently incorporated into high 

performance image forming optical systems. 

 After precisely identifying the deformities of wavefronts generated by a real 

optical system using the interferometer method described above, the question arises 

of how to make the suitable adjustments. In this last segment we will therefore present 

a short description of the important practical issue of correcting surfaces. We will 

show how any astigmatism-related flaws (concerning a given pair of conjugate points) 

produced upon the passage of an initially homocentric beam through an optical 

system can be eliminated by making the appropriate corrections to the surface of 

separation of the last refringent diopter of the system. To do so, we will refer to 

Huygens’ construction (Fig. 10 of Chapter 1.2) and reformulate the problem as follows: 

given the (deformed) wavefront 𝜙1 passing through the second to last medium (𝑛1) of 

an optical system, let us determine the shape of the last separation surface Σ so that 

the wavefront 𝜙2  passing through the final medium (𝑛2) should be spherical. The 

position of surface Σ will thus be determined based on the intersections of those lines 

normal to 𝜙1  and 𝜙2 , whose segments 𝑠1 , 𝑠2  ending at Σ  meet the condition for 

stigmatism 𝑛1𝑠1 + 𝑛2𝑠2 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. Obviously, the infinity of values that can be given 

to the constant in this formula allows for the existence of an infinity of possible 

surfaces Σ. 

 In practice it is often 

enough to apply local optical 

corrections. Let us 

demonstrate by considering 

the common situation of a final 

refringent surface Σ separating 

a medium of index n from air 

(of index n = 1 ) and of a 

random wavefront ϕ passing through the final medium that slightly deviates from a 

theoretical wavefront ϕ0 corresponding to the ideal condition of rigorous stigmatism 
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(Fig. 80). In order to compensate for a local aberration 𝛿, it thus suffices to slightly 

polish the initial surface Σ so that it matches the correct shape Σ0. The relation between 

the local depth to which the surface must be polished and the wavefront aberration 𝛿 

that must be eliminated is easy to determine. The rule for making optical corrections 

is written as follows: 

 

(323)     , 

 

or, if we take into consideration the fact that 𝐼𝐽 = 𝐾𝐿, as: 

 

(324)     . 

 

 But by studying the geometry of Fig. 80, we readily deduce that: 

 

(325)    ,  . 

 

 From these three equations we obtain the sought for relation between 𝜀 and 𝛿, 

namely: 

 

(326)     . 

 

 Similar calculations concerning a reflecting surface leads us to the formula: 

 

(327)     . 

 

 Since the paths followed by the various rays connecting rigorously stigmatic 

conjugate points must contain the same number of wavelengths 𝜆, it follows that the 

tolerance correlated with the aberration 𝛿, meaning the tolerance values of 𝜀 are of the 

magnitude of small wavelength fractions. 

  



 

Ioan Ioviţ Popescu 
Optics 

I. Geometrical Optics 

131 

 

 

Chapter III 

NON-HOMOGENEOUS MEDIA 

 
 The continuous curvature of light rays passing through non-homogeneous 

media explains various phenomena such as those of atmospheric refraction. Because 

the density, and therefore the refractive index, of air decreases with altitude, light rays 

coming from stars curve across a path concave towards the Earth (see Chapter 1.1, 

equation (16)). For this reason, the apparent height of a given star relative to the 

horizon is greater than its actual height (regular astronomical refraction). Irregular 

refraction, caused by atmospheric turbulence, produce stellar scintillation. Similar 

effects, termed mirages, occur near the Earth’s or other surfaces when their 

temperature is greater or smaller than that of the surrounding air, thus inducing a 

temperature, and so a density and a refractive index, gradient. 

 The calculation of trajectories of light rays passing through continuous 

non-homogeneous media is generally considered important in many applications. As 

a first example let us consider the gas lens, generally comprising of a heated 

cylindrical metallic tube through which a laminar flow of gas passes. The 

concentration of gas, and so its refractive index, is greater along the cylinder’s axis, 

where the temperature is lower. For this reason, the light rays transmitted through the 

tube are deviated towards said axis, an effect similar to that of a lens. Compared to a 

glass lens, the gas version completely avoids losses of light caused by reflection at the 

surfaces separating air from glass and by the diffusion suffered across the surface of 

dust particles or of imperfections across the lens surface. Of particular importance are 

the gradated planar or cylindrical and symmetrical structures used in designing 

optical guides (optical plates and fibers). 

 A high precision method of visualizing irregularities of the refractive index, 

based on the way they divert light rays, was advanced by A. Töpler (1864), and is 

known as the schlieren technique, or streak method (from the German word “die 

schliere”, which translates into “stria”). Its principle is illustrated in Fig. 81.a, in which 

the image of (point or slit) light source S is formed across a small opaque disc (or 

“knife-edge”) D, using lenses 𝐿1 , 𝐿2 , between which the schlieren camera (C), 
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containing the transparent optical 

medium to be investigated, is 

mounted. A lens 𝐿3  is used to form 

the images of the various planes of 

this medium across a screen (E). As 

can be surmised, if the medium is 

homogeneous, the screen will appear 

darkened due to the disc’s acting 

liking a screen. If, however, there are 

irregularities within the medium, the 

deflected light rays will go around 

the disc and form a schlieren image 

across the screen, that is, a map of the 

local refractive index gradients 

causing their being deviated (and 

focused on the screen by way of lens 

𝐿3 ). A method complementing the aforementioned technique is that of the 

shadowgraph, which replaces the disc used in the previous method with an opaque 

screen having a small aperture in its center. In this case, the screen will only be 

illuminated by the light rays not being diverted, since the diverted rays will be blocked 

by the screen and excluded from the initial light beam. The screen will display a 

shadowgram, in which the darkened lines corresponding to the points within the 

investigated medium of irregular refractive index will appear against a light 

background. 

 Numerous imaginative advancements have also been made within this field. 

An example would be the use of the schlieren method in combination with 

microscopes (J.R. Meyer–Arendt, 1961), as illustrated in Fig. 81.b. A one-dimensional 

cutoff pattern (D) of 5 – 10 lines/mm parallel to the slit S is mounted between the 

objective (𝐿2) and the ocular (𝐿3). If the object under investigation, placed on the glass 

slide (C), is homogeneous, its image will appear furrowed by equidistant lines 

corresponding to the pattern. Any variation in the refractive index causes specific 

distortions, as illustrated in Fig. 81.c, which describes the phenomenon when the glass 

slide is partially covered with a transparent substance. 

 Another continuous non-homogeneous “optical” medium is obtained in 

electronic and ionic optical devices, particularly in electronic and ionic microscopes. 

The non-relativistic motion of particles is described by the laws of classical mechanics, 

and, as we’ve seen in Chapter 1.2, in the case of conservative force fields, satisfies the 
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Maupertuis-Euler principle, analogous to the Fermat principle. In these cases, particle 

speed fulfils the role of refractive index n. For example, if we consider the motion of 

charged particles within an electrostatic field and choose a convenient zero value for 

electric potential U, we may consider the analogy 𝑛 = √𝑈, where U must satisfy the 

Laplace equation ∆𝑈 = 0. If this condition is satisfied, all the light ray equations of 

geometrical optics become valid for the geometrical optics of electron and ion 

trajectories. Particle trajectories are normal to the group of surfaces satisfying the 

eikonal equation |∇ϕ| = √𝑈 , the expansion of the particle beam, 𝑈𝑑Ω𝑑𝑆 cos 𝛾 , is 

invariable during propagation, the radiance of the object and that of the image satisfy 

the Clausius theorem 𝐿1 𝑈1⁄ = 𝐿2 𝑈2⁄ , and so on. 

 Working with geometrical optics approximations, a general calculating method 

for optical fields entails determining wavefronts 𝜙(𝑟) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, by integrating the 

eikonal equation (∇𝜙)2 = 𝑛2 and tracing the light rays with the use of the equation 

∇𝜙 = 𝑛𝜏 . Alternatively, the light ray and (canonical) Hamilton or Euler-Lagrange 

equations may be integrated directly. 

 We will next illustrate one last method, appropriate for simple situations in 

which the distribution of the refractive index exhibits certain symmetries, namely 

translational (planar structures), cylindrical, and spherical symmetries. 

 

 3.1 Planar Structures 

 

 Let us consider the one-dimensional function of the refractive index, of general 

form 𝑛 = 𝑛(𝑥), within a Cartesian system of coordinates. Advancement along the 

trajectory is thus given by the equation: 

 

(328)     . 

 

 As the refractive index is only dependent on variable x , it will be convenient to 

consider the light ray equation relative to the other two components, as: 

 

(329)    ,  , 

 

which would mean that the values of 𝑛𝜏𝑦 and 𝑛𝜏𝑧 are conserved along the trajectory, 

that is, 

 

(330)    ,  , 
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in which A and B are constants determined based on initial conditions. From equations 

(328) and (330) we also obtain the relation: 

 

(331)     . 

 

 Parameter s is eliminated through divisions between the equations at (330) and 

(331), following which we obtain the following system: 

 

 

(332) 

 

 

which if we integrate we obtain the projections of the ray trajectory onto the three 

coordinate planes. It will be observed that the projection of the trajectory onto the 𝑦𝑂𝑧 

plane, irrespective of 𝑛(𝑥) distribution, is the line: 

 

(333)      . 

 

In other words, the trajectory is a planar curve 

within the plane defined by equation (333). For 

this reason, without diminishing the general 

character of these considerations, we will study 

the trajectory within the plane 𝑦 = 0, that is, we 

will set the value 0 for constants A and B, as is 

illustrated in Fig. 82. In this case, constant B of 

equation (330) is given by the equation: 

 

(334)  , 

 

in which 𝑛0  and 𝛾0  correspond to the “launch point” 𝑥 = 0 , 𝑧 = 𝑧0 . Evidently, 

equation (334) is the Snell-Descartes law 𝑛 sin 𝛼 = 𝑛0 sin 𝛼0 applied to media of planar 

structure. For 𝐴 = 0 and 𝐵 = 𝑛0 cos 𝛾0, the third integrated equation represents the ray 

trajectory 

 

(335)     . 
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 The range of values for x that allow the propagation of the light rays can be 

identified based on the condition that the integrand be real, that is: 

 

(336)     . 

 

 When 𝑛(𝑥) < 𝑛0  and 𝑑𝑛/𝑑𝑥 < 0  (Fig. 83), equation (336) imposes a limited 

value 𝑥 = 𝑥𝑚𝑎𝑥 given by the equation: 

 

(337)     . 

 

 This liminal value, for 

which 𝑑𝑥 𝑑𝑠⁄ = 0  (see 

equation (336)), corresponds to 

the turning point, or point of 

total reflection. The wider the 

initial trajectory angle 𝛾0 , the 

greater the entry distance 𝑥𝑚𝑎𝑥 

(Fig. 83) is. Evidently, total 

reflection does no take place if 

𝑛(𝑥) > 𝑛0 and 𝑑𝑛 𝑑𝑥⁄ > 0. 

 Let us next consider an instance of distribution of planar symmetry, that is, a 

medium in which the refractive index decreases symmetrically on both sides of value 

𝑛0 within plane 𝑥 = 0. In this case, the trajectories are confined between an upper limit 

𝑥𝑚𝑎𝑥  and a lower limit 𝑥𝑚𝑖𝑛 . This sort of distribution has particular practical 

importance in guiding light through optical circuits. An example would be parabolic 

distribution, commercially branded Selfoc, for which the refractive index is given by 

the equation: 

 

(338)      , 

 

in which 𝑛0 and 𝑎 are constants (Fig. 84). By calculating the integral in the trajectory 

equation, equation (335), applied to distribution (338), and considering the launch 

point at the origin 𝑂(𝑥 = 0, 𝑧 = 0) of the coordinates, we obtain: 
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(339)    , 

 

or, if we invert the direction of dependence: 

 

(340)     . 

 

 Equation (340) represents a sine 

trajectory (Fig. 84) of amplitude 𝑥𝑚𝑎𝑥 =

𝑎 sin 𝛾0 (as can also be directly surmised 

from the condition for total reflection 

(337) and distribution (338)) and the 

spatial half-period ∆𝑧 = 𝜋𝑎 cos 𝛾0. As the 

initial angle 𝛾0  increases, the amplitude 

increases and the period decreases. As 

expected, based on the general considerations just discussed, light is confined to 

propagate between limits ±𝑥𝑚𝑎𝑥 . However, the remarkable feature of the Selfoc 

system is that it focuses all paraxial rays (cos 𝛾0 ≈ 1) in the same point after each half-

period ∆𝑧 ≈ 𝜋𝑎. The focus points 𝑂′, 𝑂′′, etc. are veritable successive images of the 

launch point 𝑂, as the optical path between two consecutive focalizations is practically 

the same in the case of paraxial rays. Indeed, if we consider equations (334), (338), 

(340), we have: 

 

(341)  , 

 

where 𝑂(𝛾0
2) represents terms in 𝛾0 from the second degree onwards. This property 

may be explained by referring to the fact that, as we consider rays of wider launch 

angle 𝛾0, the geometrical path traversed between two points of focalization becomes 

longer than the axial ray (𝛾0 = 0), but since they mostly pass through an area of smaller 

refractive index, the optical path remains the same. 

 

 3.2 Cylindrical structures 

 

 Let us consider a medium whose refractive index only depends on the distance 

𝑟  to a fixed axis 𝑂𝑧 . In this case, we will first describe the trajectory through a 

representation based on 𝑟(𝑧), 𝜃(𝑧), 𝑧 (see Fig. 13 in Chapter 1.2), in order to illustrate 

the application of Lagrangian formalism for the cylinder coordinates 𝑟 , 𝜃 , 𝑧 . The 
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element describing the trajectory is therefore (see Fig. 85): 

 

(342)  , 

 

where we’ve used the notations 𝑟′ = 𝑑𝑟 𝑑𝑧⁄ , 𝜃′ = 𝑑𝜃 𝑑𝑧⁄ , so that the optical 

Lagrangian takes the form (see equation (50) in Chapter 1.2) 

 

(343)  

 

 

 

 Evidently, the expression 

(343) for the Lagrangian for 

cylinder coordinates can be 

deduced from its expression in the 

case of Cartesian coordinates: 

 

 

(344)   , 

 

within which we effect the transformation 𝑥 = 𝑟 cos 𝜃, 𝑦 = 𝑟 sin 𝜃, z=z. 

 We presently have at our disposal the following system of differential 

equations for the light ray trajectory: 

 

(345) 

 

of which the first two equations are the Euler-Lagrange equations, and the third is the 

𝑧 component of the ray equation. As we’ve seen in Chapter 1.2, only two of these 

equations are independent. We will therefore choose the ones easier to integrate. For 

the cylindrical distribution considered here, 𝑛 = 𝑛(𝑟), we have 𝜕𝐿 𝜕𝜃⁄ = 0, 𝜕𝑛 𝜕𝑧⁄ = 0, 

so from the first two equations at (345) we obtain the conservation of corresponding 

momenta (impetuses), that is: 

 

(346)    , 

 

in which: 
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(347)      , 

 

(348) 

 

are integral constants determined by the initial conditions of the trajectory. In equation 

(346) we can observe that if 𝐴 = 0, so 𝑑𝜃 𝑑𝑠⁄ = 0, then the trajectory remains in a given 

plane containing the symmetry axis 𝑂𝑧, and constitutes a meridional ray, whereas if 

𝐴 ≠ 0, so  𝑑𝜃 𝑑𝑠⁄ ≠ 0, then the trajectory rotates around the 𝑂𝑧 axis and constitutes a 

skew ray (Fig. 85). We may also observe that any ray launched from the 𝑂𝑧 axis (𝑟0 =

0) is meridional, and if 𝑟0 ≠ 0 the ray is meridional or a skew ray, corresponding to 

the value of (𝑑𝜃 𝑑𝑠⁄ )0 being zero or different from zero. 

 Based on the expression of the path element, equation (342), we also have: 

 

(349)     . 

 

 We will rewrite equations (346), (347), (349) as the system: 

 

 

 

(350) 

 

 

 

or, by dividing the first two equations with the third and integrating, 

 

(351)     , 

 

 

 

(352)     . 

 

 

 Using equations (351) and (352) we’ve thus obtained the general expression for 

the trajectory of light rays in media of cylindrical symmetry. 

 The range of values of 𝑟 that allow light rays to propagate can be deduced 

based on the condition that the integral should be a real number, that is, that: 
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(353)      , 

 

in which the right term, which through 𝐴 and 𝐵 

depends on the initial conditions (the equations 

at (348)), is a constantly decreasing function or 𝑟. 

Let us illustrate by considering the bell-shaped 

function 𝑛2(𝑟) (Fig. 86). We can see that the light 

ray can only propagate for the hatched domain 

𝑟𝑚𝑎𝑥 ≥ 𝑟 ≥ 𝑟𝑚𝑖𝑛, in which the liminal values 𝑟𝑚𝑖𝑛 

and 𝑟𝑚𝑎𝑥  are the solutions to the equation in 

condition (353). These limits, which also result 

from the third equation (350) for 𝑑𝑟 𝑑𝑠⁄ = 0, are 

the turning, or total reflection points. 

 Let us conclude by giving a description of the light guiding property of an 

optical fiber, featuring a Selfoc*-type distribution of the refractive index, namely: 

 

(354)      . 

 

 By calculating the integrals at (351) and (352) for the distribution at (354), we 

therefore obtain in principle a skew trajectory in the form of an ellipsis around the 

symmetry axis 𝑂𝑧 (Fig. 87). The projection of this ellipsis across a transverse plane 𝑥𝑂𝑦 

is an ellipsis whose semi-axes are equal to 𝑟𝑚𝑖𝑛  and 𝑟𝑚𝑎𝑥, respectively. As the value of 

constant 𝐴 increases, the curve (𝐴 𝑟⁄ )2 + 𝐵2 in Fig. 86 rises, and the allowed domain 

𝑟𝑚𝑖𝑛 ≤ 𝑟 ≤ 𝑟𝑚𝑎𝑥 narrows, until the elliptical helix is reduced to a circular helix (𝑟𝑚𝑖𝑛 =

𝑟𝑚𝑎𝑥). If 𝐴 = 0 and 𝐵 ≠ 0, the integrand in equation (351) is eliminated, and integral 

(351) becomes identical to the one that we will obtain in the following Chapter 3.3, 

describing spherical symmetry, equation (361). In this case, the trajectory will be 

planar, contained within a plane perpendicular to the symmetry axis 𝑂𝑧. 

 Note that, in order for the approximation of geometrical optics to be adequate, 

it is necessary that the diameter of the optical fibers should be larger than the 

wavelength by a coefficient of at least several score. Because they satisfy this condition, 

Selfoc optical fibers allow the propagation of light across great distances with minimal 

losses, and permit important applications in optical communication technology. 

Similarly, because of their property of periodic light focalization, cylindrical glass bars 

                                                           
* This type of fibers and optical bars are manufactured by the Japanese company Nippon Sheet Glass 
Co. 
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with parabolic distribution of the refractive index are used as Selfoc micro-lenses. 

Such bars of a diameter not exceeding several millimeters (so much larger than Selfoc 

optical fibers), allow the transferring of images from one end to the other. 

 

 3.3 Spherical Structures 

 

 Let us first write the equation of the light ray, equation (13): 

 

(355)      , 

 

multiplied vectorially by the position vector 𝑟. We get: 

 

(356)     , 

 

where we’ve added the identically zero term 𝜏×(𝑛𝜏) in order to complete the total 

derivative of the left member. 

 In the following lines we will consider a medium whose refractive index 

depends only on the distance 𝑟 to a fixed point 𝑂, so that 𝑛 = 𝑛(𝑟). For the sake of 

convenience, we will take the center of symmetry 𝑂 to also be the origin of the position 

vector 𝑟 of the light ray trajectory, so that ∇𝑛 = (𝑟 𝑟⁄ ) 𝑑𝑛 𝑑𝑟⁄ . Consequently, from the 

light ray equation written as equation (356) we deduce the fact that vector 𝑟×(𝑛𝜏) is 

conserved along the trajectory, that is: 

 

(357)      , 

 

where 𝐴 is a vector constant for all trajectories. Evidently, this theorem is analogous 

to that of conservation of kinetic momentum approached in mechanics, regarding the 

motion of particles within a field of central forces. From equation (357) we deduce that, 

irrespective of the initial (launch) vectors 𝑟0, 𝜏0, the light ray trajectory is a planar 

curve within the plane defined by (𝑟0, 𝜏0), normal to 𝐴, which also passes through 

center of symmetry 𝑂. Written relative to its absolute value, equation (357) becomes 

Bouguer’s theorem: 

 

(358)     , 
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in which 𝜑  is the angle between 

vectors 𝑟  and 𝜏 , 𝜑0  is the angle 

between initial vectors 𝑟0 and 𝜏0, and 

𝑟𝑚  is the minimum distance 𝑟𝑚𝑖𝑛  (or 

maximum distance 𝑟𝑚𝑎𝑥 ) of the 

trajectory relative to the center of 

symmetry, so that 𝜑𝑚 = 𝜋 2⁄  (Fig. 88). 

Note that points located at the same 

distance 𝑟  from the origin have the 

same corresponding value sin 𝜑 , so 

identical corresponding angles 𝜑 and 

𝜋 − 𝜑. 

 Next it will be convenient to discuss the polar coordinates 𝑟 and 𝜃 within the 

plane containing the trajectory and center of symmetry 𝑂. In studying the geometry 

(Fig. 88), we can deduce the relation 𝑟𝑑𝜃 𝑑𝑠⁄ = sin 𝜑 , which allows us to rewrite 

equation (358) as: 

 

(359)      , 

 

which is analogous to equation (346) discussed when dealing with cylindrical 

symmetry. On the other hand, if we use the trajectory path element (𝑑𝑠)2 = (𝑑𝑟)2 +

(𝑟𝑑𝜃)2, we get: 

 

(360)    . 

 

 If we divide the last two equations one by the other and integrate, we obtain 

the general expression of the light ray path in media of spherical symmetry: 

 

(361)     . 

 

 This is an integral of the same type as the one described previously, in equation 

(351), where 𝐵 = 0. The domain of values for 𝑟 that allow the propagation of light rays 

is obtained by imposing the condition that the integrand should be real, that is: 

 

(362)      , 

 

where the right member depends on the initial conditions through constant 𝐴 , 
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equation (358), and decreases constantly with 𝑟. The turning, or total reflection, points, 

𝑟𝑚, are the solutions of the equation in condition (362). Evidently, for these limits we 

have 𝑑𝑟 𝑑𝑠⁄ = 0, as can be deduced from equation (360). 

 Let us illustrate by considering first a distribution of the refractive index 

described by the equation: 

 

(363)      , 

 

in which 𝑎(> 0) is a constant. In this case the general integral, equation (361), takes the 

form: 

 

(364)      , 

 

and the trajectory equation is written as: 

 

(365)     , 

 

or: 

 

(366)     , 

 

where 𝛼  is the integrating constant 

determined from initial conditions 𝑟0, 𝜃0. 

Equation (366) is the polar equation of a 

parabola of parameter 𝑝 = 2𝑟𝑚 = 2𝐴2 𝑎⁄  

(Fig. 89). So the coordinates of the turning, 

or total reflection, point are 𝑟𝑚 = 𝐴2 𝑎⁄ , 

𝜃𝑚 = 𝛼 . Evidently, the distance of the 

perihelion 𝑟𝑚  satisfies (or can be directly 

calculated by referring to) the general 

condition, (362). 

 A remarkable example of spherical symmetry, first considered by Maxwell 

(1854), is the distribution termed fish-eye, which is described by the equation: 

 

(367)      ,  

 

in which 𝑛0  and 𝑎  are constants. In this case, the general integral, equation (361), 
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becomes: 

 

(368)     , 

 

 

where we’ve used the following notations: 

 

(369)      . 

 

The trajectory equation thus takes the form: 

 

(370)    , 

 

in which 𝛼 is the integrating constant determined from initial conditions 𝑟0, 𝜃0. If we 

invert this relation and go back to the 𝑟  variable, we obtain the trajectory polar 

equation written as: 

 

(371)     , 

 

where constant 𝑏 is defined as: 

 

(372)    , 

 

 Next, if we write equation (371) for coordinates 𝑥 = 𝑟 cos 𝜃 and 𝑦 = 𝑟 sin 𝜃, we 

get: 

 

(373)     , 

 

meaning the trajectories are circles of radius 𝑟 = √𝑎2 + 𝑏2 , with their center at the 

point of coordinates 𝑥𝑐 = −𝑏 sin 𝛼, 𝑦𝑐 = 𝑏 cos 𝛼 (Fig. 90). If 𝑎2𝑛0
2 = 4𝐴2, we have 𝑏 = 0; 

equation (372) and the trajectory constitute the circle of minimum radius 𝑟 = 𝑎 , 

centered in the center of symmetry 𝑂. Generally, as can be surmised from the polar 
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equation, equation (371), all trajectories 

intersect the fixed circle 𝑟 = 𝑎  in 

diametrically opposed points 𝑟 = 𝑎 , 

𝜃 = 𝛼 and 𝑟 = 𝑎, 𝜃 = 𝛼 + 𝜋 (Fig. 90). 

 A remarkable property of the 

fish-eye distribution is that all light 

rays starting from any given point 

source 𝑃1(𝑟1, 𝜃1)  meet at a point 

𝑃2(𝑟2, 𝜃2), so that the coordinates of the 

two points are linked through the 

following symmetrical relations: 

 

(374) 

 

Let us demonstrate by describing the group of trajectories (371), of parameter 𝛼 , 

passing through point 𝑃1(𝑟1, 𝜃1): 

 

(375)     . 

 

We can readily verify that no matter the value of parameter 𝛼, all the trajectories of 

this group also pass through point 𝑃2(𝑟2, 𝜃2) of polar coordinates given by equation 

(374). In other words, points 𝑃1 and 𝑃2, conjugate through the relations at (374), are 

located on the line passing through the center of symmetry 𝑂, one on each side, at 

distances given by the relation 𝑟1𝑟2 = 𝑎2 (Fig. 90). Evidently, this geometrical property 

does not depend on the direction of propagation of the light rays, so that we can just 

as well consider 𝑃2 as a luminous point source and 𝑃1 as point of focalization. The 

fish-eye distribution is a classic example of a perfect optical instrument, in the sense 

that any conical (homocentric) light beam projecting from a random object point in 

space is transformed into a conical beam that converges in the corresponding image 

point. 

 Another interesting example of spherical distribution is the Luneburg lens, 

comprising a non-homogeneous sphere of unit (relative) radius and refractive index 

𝑛 = √2 − 𝑟2 (for 𝑟 ≤ 1), placed in air (𝑛 = 1 for 𝑟 > 1): Fig. 91. Because for 𝑟 = 1 we 

have 𝑛 = 1  (on the outside, as well as on the inside), no ray of incidence will be 

refracted per se at the surface of the lens; refraction takes place continuously within 

the lens (for 𝑟 < 1). 

 In the case of this type of lens, relation (361) yields us: 
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(376)  . 

 

 If we use the notation 𝑖 for 

the angle of incidence to the lens 

(where 𝑟 = 1  and 𝑛 = 1 ) of a 

light ray originating in 𝑃1 

(located at infinity) and refer to 

relation (358), we discover that 

𝐴 = sin 𝑖, and so: 

 

(377)     , 

 

 After integrating and considering the initial condition 𝜃 = 𝑖, 𝑟 = 1, we obtain 

the trajectory: 

 

(378)    , 

or 

(379)    . 

 

 From here we may surmise that, for any 𝑖, at 𝜃 = 𝜋 we have 𝑟 = 1, meaning 

perfect focalization in point 𝑃2  on the sphere surface, as can be seen in Fig. 91. 

Consequently, the image of an extended object located at a long distance from the lens 

will form across a spherical surface of unit radius. This kind of lenses manufactured 

from porous plastic material have been used in the field of microwaves. They differ 

from the regular lenses of optics, in whose case refraction only takes place on the 

surface. 

 A more general continuous distribution of the refractive index that allows the 

achievement of stigmatism is described as: 

 

(380) 

 

where 𝑝 > 0. Particularly, for 𝑝 = 1 2⁄ , we obtain the distribution of the Luneburg lens. 

This kind of distribution is useful in the field of short electromagnetic waves 

(decimetric and centimetric), in constructing projecting systems that transform a 

homocentric beam originating in a point source into a parallel beam (planar waves), 

but also in the field of optics where through its two-dimensional versions it is used as 
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lenses in integrated optical circuits. Fig. 92 illustrates a two-dimensional Luneburg 

lens (seen from above), which transforms concentric circular objects into images and 

vice-versa. 

 In the examples shown above 

we’ve considered the problem of 

determining the trajectory 𝜃(𝑟)  of 

light rays, equation (361), for a given 

distribution 𝑛(𝑟) . Naturally, the 

problem can be formulated the other 

way around: determine the 

distribution 𝑛(𝑟)  from the trajectory 

integral equation, relation (361), 

considering given light ray 

trajectories 𝜃(𝑟). For example, let us determine the nature of the dependency 𝑛(𝑟) of 

the refractive index of a spherically symmetrical medium, so that the light ray 

trajectory 𝑟(𝜃) should be a parabola (conical, of eccentricity 𝜀 = 1) of equation: 

 

(381)    , 𝑝 = known. 

 

 Referring to equation (361) we immediately obtain: 

 

(382)     , 

 

in which we then make the following replacement: 

 

(383)      . 

 

We thus obtain: 

 

(384)      , 

 

where, according to relation (358), 𝐴 = 𝑟𝑚𝑖𝑛𝑛(𝑟𝑚𝑖𝑛), in which 𝑟𝑚𝑖𝑛 = 𝑝 2⁄ . If we use the 

notation 𝑎 ≡ 2𝐴2 𝑝⁄ , the result we thus reach coincide with dependency (363) 

previously discussed. 

 Readers interested in the issues discussed in this chapter will find additional 

information in works [16], [29], [45], [46], [54], and [95]. 
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Appendix A 

MOMENTS IN THE HISTORY OF GEOMETRICAL OPTICS 
 

  Archeological research reveals that, as far back as 4000 years ago, 

the Egyptians mastered the technique of polishing metallic mirrors 

made from copper, bronze and later speculum, a copper alloy, rich in 

tin. One such mirror, dated around 1900 BCE, was discovered in perfect 

condition near the pyramid of Sesostris II along the Nile river valley. 

Archeological evidence also proves that rudimentary lenses were 

already in use between 3000 and 3500 years ago. First written mention 

of a converging lens, used to focus sunbeams, may be found in 

Aristophanes’ comedy The Clouds of 424 BCE, in which a certain debtor 

is thus able to destroy the proof of his debt, marked on a wax tablet, from 

afar. 

 The great Greek philosophers speculated much on the nature of 

light and the mechanism of sight, and advanced simple hypotheses that 

today seem partly strange and partly essentially correct. The geometer 

Pythagoras (582 – 500 BCE) believed that the human eye emitted light 

beams, like a headlight, by use of which it “felt” surrounding bodies, a 

principle foreshadowing today’s radar and sonar devices (!); Empedocles 

(490 – 430 BCE), who authored the doctrine of matter being composed 

of particles of the four elements (earth, water, air, and fire; today we 

would say solids, liquids, gases, and plasma), advanced the hypothesis 

that light propagates through space at a finite speed; Democritus (460 – 

370 BCE), the father of the atomist doctrine, supposed that visual 

sensations are caused by minute material particles (named eudols) 

emitted by objects. Plato (427 – 347 BCE), author of the famous dialogues 

and advocate of the “ocular rays,” makes the first important observation 

regarding the refraction of light (in the Republic, line 602, book X), and 

Aristotle (384 – 322 BCE), the greatest scientific figure of Antiquity, 

objects to light beams being emitted by the eye and advances an ether 

hypothesis similar to that of the 19th century. 

 The great Greek geometer Euclid of Alexandria, from around 300 

BCE, author of Antiquity’s mathematical work Elements (of Geometry) 

in 13 volumes (see Elements of Geometry, three volumes, Dover 

Publications Inc., New York, 1956), also wrote the first great work of 
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optics, the Optics, in which he sets the foundation for perspective 

theory. Also sometimes attributed to Euclid is a work on Catoptrics, 

which contains a study of the laws of reflection, a series of theorems on 

planar mirrors, and a description of the focalizing action of concave 

mirrors. It follows that Euclid quite probably was aware of the laws that 

up until this day mark the foundation of Catoptrics, which state that: (1) 

in homogenous media light propagates in a straight line, (2) the angles 

of incidence and reflection are equal, and (3) the rays of incidence and 

reflection belong to a plane perpendicular to the mirror’s surface. 

However, it must be said that, unlike Euclid’s work on geometry, which 

exhibits flawless logic, his work on geometrical optics also contains 

many inaccuracies. It is doubtful whether these assertions were 

authored by the great geometer. 

 Archimedes of Syracuse (287 – 212 BCE), Greek mathematician 

and physicist, considered to have been the greatest mathematical genius 

of Antiquity, founder of statics and hydrostatics, is mentioned in Roman 

historiography in the legend surrounding his using mirrors spread 

along the shore to reflect solar radiation onto the Roman fleet that 

besieged Syracuse (212 BCE). 

 Cleomedes (around 50 BCE), Greek astronomer, describes the 

refraction of light by demonstrating that a light ray approaches the 

normal line when it enters a denser medium and moves further away 

from it when it enters a medium of lower density. He affirms that the 

Sun is visible even below the horizon, thanks to atmospheric refraction. 

He mentions the “coin in a cup” experiment made by Ctesibius at the 

University of Alexandria around 50 BCE, which consisted in placing a 

coin on the bottom of an empty cup and making the coin visible to 

surrounding observers by filling the cup with water. 

 Seneca, Lucius Annaeus (around 4 BCE – 65 BCE), Roman 

philosopher and politician, observed that a globe made of glass could be 

used to enlarge images. It is quite possible that Roman craftsmen even 

then used enlarging lens for very fine work. Also, Caius Plinius 

Secundus, or Pliny the Elder (23 – 79) was aware that a glass sphere could 

kindle certain matter placed in its focal point when exposed to the Sun, 

and draws attention to his application of this device to cauterizing 

wounds. The well-known roman naturalist (author of an encyclopedia 

on natural history comprising 37 volumes) died while closely observing 
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an eruption of Mount Vesuvius (79 CE). 

 Hero (Heron) of Alexandria (probably 1st century), Greek 

mathematician and inventor, great experimenter, is known in particular 

for his water, vapor or compressed air based machines and devices. 

Heron’s Catoptrics is one of the most interesting books on optics in 

Antiquity. In this work, Heron observes a deeper reason underlying the 

laws of catoptrics (see the paragraph on Euclid above), by postulating 

that light rays propagate from one point to another along the shortest 

possible route. This assertion constitutes the first formulation of a 

natural law using a variational principle. The same idea was later taken 

up by Fermat (1657), who generalized it under the form of the “principle 

of least time” to also encompass an explanation for the law of refraction. 

Within the same work, being the remarkably imaginative experimenter 

that he was, Heron also described numerous amusing or practical effects 

one could achieve by the use of planar and cylindrical mirrors. 

 Ptolemy, Claudius, of Alexandria (100 – 160), Greek astronomer, 

mathematician and geographer, became famous for his work 

"Mathematical Treatise" (Almagest), and for his Ptolemaic geometrical 

system – a geometrical design devised by Ptolemy by which the 

apparent movements of the Sun, Moon and planets, as seen by a 

terrestrial observer, are predicted with a high degree of precision (with 

a deviation of two degrees at most from the observer position). 

According to this design, the movement of the heavenly bodies result 

from the composition of uniform circular motions, namely a circular 

motion based on a small circle (the epicycle), whose center moves along 

a large excentric circle (the deferent) around the Earth (see S. Olariu, 

Geneza și evoluția reprezentărilor mecanicii clasice, The Scientific and 

Encyclopedic Press, Bucharest, 1987). Ptolemy also possessed the most 

extensive and thorough knowledge of optics in Antiquity, and wrote one 

of the most remarkable treatises on optics, Ptolemy’s Optics. For a long 

time believed to be lost and known solely through citations found within 

writings from the Middle Ages, it was ultimately recovered from the 

latin manuscripts, Ptolemaei opticorum sermones quinque, translated 

from Arab. This treatise encompasses all the branches of optics that were 

then known, namely sight, reflection on planar and concave mirrors and 

refraction. Ptolemy also undertook a serious experimental study of the 

refraction of light, a singular work in Antiquity, in which he studied the 
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refraction of light through air into water and glass, and through glass 

into water, he described the measuring instrument (a circular graded 

disc for measuring the two angles), and left tables containing the 

experimental data regarding angles of refraction corresponding to 

angles of incidence (every 10 arc degrees). The data regarding the 50° 

and 60° angles of incidence is surprisingly of particular precision. It is 

evident that Ptolemy could have discovered the exact law of refraction. 

Unfortunately, it remained undiscovered until Snell (1621) and 

Descartes (1672). Ptolemy also does not mention anything regarding the 

separation of color through refraction (light dispersion), leaving this 

phenomenon to be discussed by Newton (1672). On the other hand, his 

astronomical preoccupations led to his learning more about 

astronomical refraction. Thus, Ptolemy discovered that the apparent 

position and actual position of a star coincide only when located at the 

zenith, and that the rest of the sky showed the heavenly bodies at a 

greater height than their actual position due to atmospheric refraction, 

the discrepancy becoming greater the closer the heavenly bodies are to 

the horizon. In other words, he knew that light rays entering the 

atmosphere obliquely curb towards Earth. 

 This is the extent of the knowledge the scholars of Antiquity had 

in the field of optics. Although they are not impressive, they far surpass 

the knowledge held at that time in any other branch of physics. 

 Abu Ali Al-Hasen ibn Al-Hasan ibn Al-Haytam, or Alhazen, for 

short (around 965 – 1039), Arab mathematician and physicist, the 

greatest scholar of optics of the early Middle Ages, author of the treatise 

on optics entitled Kitab Al Manazir, made valuable contributions to 

geometrical and physiological optics. Alhazen extended the research 

regarding the reflection of light to encompass conical, concave, and 

convex surfaces, he formulated the problem of the position of the point 

of incidence of a light ray for the given positions of the eye and the 

luminous point (Alhazen’s problem), and he postulated the law of 

reflection, observing that the ray of incidence, the reflected ray, and the 

normal line to the mirror surface in the point of incidence are located in 

the same plane. He also extended this observation to the law of refraction 

(his experiments are still used today for illustrative purposes), he 

remarked that Ptolemy’s observation, that the angles of incidence and 

refraction are proportional, is only valid for sufficiently small angles, but 
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he, too, missed the opportunity to discover the exact mathematical 

formula for this law, although the Arab mathematicians had already 

developed the concept of the sine. Alhazen conclusively disproved the 

“ocular ray” hypothesis inherited from Pythagoras and Plato and still 

present in Ptolemy’s Optics using factually based arguments, namely 

that sight is drastically influenced by external conditions such as lighting 

and the apparent color, dimensions, and intensity of light given off by 

objects. The only simple explanation would then be that sight is caused 

by something that travels from objects to the eye. By observing that the 

effect of intense light is felt even after closing one’s eyes, Alhazen 

concluded that light induced certain reactions within the eye. In order to 

understand the mechanism of sight, he conducted a detailed anatomical 

study of the human eye, correctly describing the cornea, choroid, iris, 

crystalline lens, humors and retina, with its nervous structure. This 

became a classical description. Even the term lens comes from the Latin 

translation lens of what Alhazen in Arabic called adasa, meaning bead, 

when he described the crystalline lens. He later constructed a simple 

physical model of the eye, the famous pinhole camera, by the use of 

which he conducted numerous experiments. However, the fact that the 

image was inverted in the pinhole camera led him to believe that, by 

comparison with the eye, the image was perceived on the first surface of 

the lens, and not on the retina. There would still be a long while before 

Kepler (1600) would realize that the retina is the photosensitive stratum 

after all, and that setting the inverted image right was a physiological 

effect. Alhazen also used the pinhole camera as a veritable precursor of 

the photographic camera in order to study solar eclipses. The work of 

the great Arab scholar was translated into Latin as Opticae Thesaurus 

Alhazeni, and had a profound influence on Robert Grosseteste, Roger 

Bacon, Witelo, Leonardo da Vinci, Johannes Kepler and Isaac Newton. 

 Grosseteste, Robert (1168 – 1253), British philosopher, the first 

rector at Oxford University, was one of the European pioneers of the 

experimental and deductive method. He wrote about movement, heat, 

sound and light, he carried out experiments using mirrors and lenses, 

and considered optics to be the foundation of all sciences. 

 Bacon, Roger (1214 – 1294), British philosopher, compiled all his 

writings on optics in Opus Majus (1267). Among his achievements, the 

following are worth mention: he precisely determined the focal point of 
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spherical concave mirrors, he described the spherical aberration, and 

recommended a parabolic design for mirrors. Roger Bacon was a man of 

great erudition, and was known among his contemporaries as Doctor 

mirabilis. He was endowed with an original spirit and the inventive 

genius, which would have perhaps led him to important discoveries if 

he had lived in more enlightened times and more favorable 

circumstances. It is known that his work abounds in projects which he 

never finished (road and sea transportation, flight, submarine 

exploration, medical remedies obtained using chemicals, even gun 

powder, which was invented much earlier!). In particular, within the 

field of optics, he intuitively guessed the possibility of constructing the 

magnifying glass and the telescope, and he measured the angle of the 

rainbow. However, his writings are so vague and brief that it is 

impossible to attribute to him the authorship of any one invention. 

Despite all this, Roger Bacon is considered to have been an early 

proponent of modern science due to his very wide-ranging interest for 

science and to his open-minded and firm belief that useful knowledge 

cannot be obtained through baseless speculation, but only through 

discovering the facts based on the solid foundation of observation, 

experiment, and mathematical reasoning. 

 Witelo, lat. Vitellius (1220 – ?), Polish physicist and philosopher, 

studied in Italy (1269). Through his work on optics (from around 1274), 

which was voluminous, but contained little new knowledge, he 

established a connection with the Greek and Arab optics, in that he again 

brought to attention what Alhazen and the scholars of Antiquity had left 

in this field. Unfortunately, Witelo ultimately became famous for his 

errors related to his experimental calculation of the angles of refraction 

of light passing through air into glass and water, which yielded 

impossible results (they were at odds with the phenomenon of total 

reflection, which was not yet known at the time). It is possible that this 

very data later led Kepler (1611) astray, preventing him from finally 

discovering the exact law of refraction. We would be unjust not to 

acknowledge Witelo’s merits, beginning with his volume on optics, 

which he gave to Europe. Empirically, he was aware of the phenomenon 

of dispersion, which always co-occurs with the refraction of light, he 

made the natural observation that, in refraction, the two angles remain 

the same whichever way light propagates, he noticed that some of the 
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light is lost in reflection and refraction, he contributed to the psychology 

of sight, and came very close to understanding the phenomenon of 

rainbows. 

 Degli Armati, Salvino (? – 1317), Florentine noble, is apparently 

the inventor of the eyeglasses, according to an epitaph in Florence. In 

reality, the identity of the inventor of the glasses is a problem shrouded 

in mystery, and whoever it was, he/she probably had nothing to do with 

the underlying theoretical aspects, but more likely made this 

achievement through practice and on account of chance. Locating the 

moment of invention within the 13th century is supported by the 

dictionary of the Accademia della Crusca, in which the year given for 

the invention is 1285, and by an old manuscript dated 1299. The first 

portrait of a man wearing glasses was painted by Tomasso di Medina 

(1352). Only convergent lens for long-sightedness were initially used. 

There is no reference to the use of divergent lens for short-sightedness 

before the second half of the 15th century. 

 Leonardo da Vinci (1452 – 1519), Italian artist and scientist, 

considered to be the greatest observer of nature of all time, whose 

passion for art, painting, sculpture, architecture, and music led him to 

vast scientific and technical research. He observed the resistance, 

compressibility, and weight of air, as well as the flight of birds, and 

designed the glider and the parachute. He studied the shapes formed by 

sand on vibrating surfaces, standing waves in liquids, friction, the 

effective weight of bodies placed on inclined planes and the 

parallelogram of forces, he designed canals, irrigation systems and 

artistic constructions, he invented the elevator, and researched the 

distribution of tension in arcades, columns, and walls. He studied 

capillarity and the formation of drops, and compared the density of 

liquids by balancing them in a U-shaped tube. The quality of his research 

and observations concerning human anatomy were unmatched. He 

studied the anatomy of the eye and devised a model for it (he assumed 

that light rays traverse it twice in order for the image to be upright!), he 

observed the phenomenon of diffraction, and he designed a photometer 

and a device for polishing concave mirrors. Unfortunately, with the 

exception of his Trattato della pittura, most notes and designs 

belonging to this man of genius were left in unorganized manuscripts, 

of which some were lost and some have remained unknown until 
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recently (Venturi, Essai sur les ouvrages de L. da Vinci, 1797). 

 Maurolico, Francesco (1494 – 1575), Italian geometer and scholar 

in optics, of Arab descent, known for his well-written work on optics, 

entitled Photismi (theoremata) de lumine et umbre (Venice, 1575). He 

surpassed his predecessors, Alhazen and Witelo, in that he no longer 

located perception of images in or on the crystalline lens, but behind it, 

likening its functioning to a biconvex lens, thus explaining short and 

long-sightedness. In order to give an idea of why understanding the 

workings of eye was so difficult, it would be useful to mention that 

Maurolicus had not yet realized that a real image forms on the retina in 

the back of the eye. He also observed, for the first time, that light rays 

given off by a punctiform source have a wrapping surface known today 

as caustic, on which the concentration of light is at its maximum level, 

and he measured the angular diameters of the rainbow arcs. 

 Porta, Giambattista della (1534 – 1615), Italian naturalist, wrote 

one of the most ”colorful” works of his time, Magiae naturalis libri XX, 

1589, later translated into five languages (Italian, French, Spanish, 

German, and Arab), a veritable vade mecum of the times, a bizarre 

mixture of useful recipes and myths and legends gathered uncritically 

from the most diverse sources, which the author refrains from 

specifying: from cosmetics, perfumes and distillation, gardening, 

housekeeping and obtaining wealth, pyrotechnics, metallurgy and fake 

precious stones, to astrology, sympathy-antipathy, and palmistry. It is in 

only in his seventeenth volume that he discusses optics, in which he 

presents numerous tricks using mirrors, as Hero had done 1500 years 

before, but also the first exact theory of multiple mirrors, the first 

complete description of the camera obscura, with pinhole or with lens, 

he compares the eye and pupil to the camera obscura and diaphragm, 

and he presents various combinations of convergent and divergent 

lenses, which later led to his claims to having invented the telescope. 

 For indeed, the 1590 – 1610 moment of the telescope and 

microscope had finally arrived. These inventions were achieved 

empirically by the Dutch opticians Hans Lippershey, Jacob 

Adriaanszoon, or Hans and Zacharias Jansen, and out of scientific 

interest by Galileo Galilei and Johannes Kepler. But let us first see the 

state of astronomical observation in the period leading up to the 

discovery of the refraction telescope. 
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 Brahe, Tycho (1546 – 1601), Danish astronomer, perfected the art 

of astronomical observations with the naked eye, thus bringing the art 

to its limit, to this end using large and precise mechanical devices. For 

example, Tycho Brahe’s quadrant had a radius of almost two meters and 

a greater level of precision than five arc seconds. In order to get an idea 

of the magnitude of this achievement, we note that a man in Bucharest 

is seen in a straight line from Drobeta-Turnu Severin under an angle of 

one arc second. Tycho Brahe’s data regarding the positions and 

movements of the stars, Sun, planets, and Moon, whose precision 

astonishes us even today, was published in Astronomiae instauratae 

mechanica (1598). It allowed Kepler (Astronomia nova, 1609) to discover 

that the planets’ orbits are ellipses, with the Sun being located in one of 

the focal points, and stimulated Römer’s studies, which led to his 

determining the speed of light (1676). 

 In Holland, as in Italy (near Venice), quality glass was produced 

for eyeglass lens. Although Holland is undeniably the country in which 

the telescope was invented, it is not at all clear who exactly the inventor 

was. According to the Hague archives, the first request for a patent for 

this instrument is dated 20th of October 1608, and was made by the 

optician and lens craftsman Hans Lippershey (1587 – 1619), but was 

immediately contested by his fellow craftsmen Jacob Adriaanszoon, and 

Hans and Zacharias Jansen (his son). In the resulting confusion, the 

right of patent requested by Lippershey was denied. It is known for a 

fact that Dutch spyglasses were being sold in 1609 in Paris, Frankfurt, 

London, Milan, and Padua. It is not surprising that the compound 

microscope was invented practically at the same time, being attributed 

to Zacharias Jansen (1588 – 1632) and his father, although several others 

claimed precedence in this case as well (George Huefnagel of Frankfurt 

and the astronomer Francesco Fontana of Napoli). Thus, around the year 

1610, the notion that using two lenses would produce an image much 

larger than that obtainable using one was put in practice. Use of the new 

optical instrument for seeing across large distances – the refraction 

telescope – spread rapidly throughout Europe. It is understandable why 

the authorities had a special interest in this device. Its impact on science 

was immediate, as Galileo and Kepler would soon demonstrate. 

 Galilei, Galileo (1564 – 1642), Italian astronomer, mathematician 

and physicist, professor at the universities of Pisa and Padua, for his 

1610 

1598 

1608 



 

Ioan Ioviţ Popescu 
Optics 

I. Geometrical Optics 

156 

 

fundamental discoveries in mechanics and astronomy, he is considered 

to be the founder of exact sciences and the modern scientific method. His 

descriptions of his experiments and mathematical reasoning written 

following this principle are comparable to those written today, as we can 

observe by reading his useful work Discorsi e dimostrazioni 

matematiche intorno a due nuove scienze (Leiden, 1638), translated into 

Romanian by Victor Marian, with the title Dialoguri asupra științelor 

noi, Academy Press, 1961. Firstly, we note that the way in which Galileo 

studied uniformly accelerated movement represented a veritable 

starting point for differential representations later introduced in physics 

by Newton (1669). Among his achievements in the field of mechanics we 

mention the discovery of the isochronism of pendulum oscillation 

(1583), the invention of the hydrostatic balance (1586), his classical 

experiments and theory regarding falling weights and the movement of 

projectiles (see Dialoguri, mentioned above). Yet Galileo’s fame among 

his contemporaries was due to his crafting of the first practical 

telescopes (1609) and the astonishing astronomical discoveries he made 

using such a device, beginning with the nights from the 7th to the 15th of 

January 1610, when mankind finally opened its eyes to the heavens. In 

fact, Galileo first heard about Dutch telescopes as late as May 1609, while 

he was professor of mathematics in Padua, and had not yet begun his 

study of optics. These telescopes, consisting of a convergent objective 

lens and a divergent eyepiece lens, were very rudimentary and did not 

exceed a magnifying power of 3X. Galileo quickly set to single-handedly 

fashioning his own telescopes, by fashioning two lenses, one convex and 

one concave, which he fixed within an organ pipe, an instrument which 

he improved in time, quickly reaching magnification powers of 14X, 20X, 

and finally 30X (he crafted over 100 within his lifetime). In August of 

1609, Galileo was already presenting the Senate of Venice with such a 

telescope, much more powerful than the one he had received from 

Holland, and in January of 1610 directed his telescopes towards the sky, 

finding heavenly bodies never before seen. He thus observed the four 

main satellites of Jupiter (three on the night of January the 7th, the fourth 

becoming visible on January the 13th), a veritable miniaturized 

Copernican system (the orbits of these satellites are located within the 

plane of Jupiter’s equator, their semi-axes having a length equal to 

several of the planet’s diameter, the satellites’ orbital periods having a 
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duration of several days), he discovered the lunar mountains, valleys, 

and craters (the surface of the Moon was therefore not smooth, as the 

ancient Greeks had supposed), the ring surrounding the planet Saturn 

(initially named planeta tricorporeum), the phases of Venus, sunspots 

and the rotation of the Sun, and the Milky Way’s star structure (in which 

he saw thousands of stars, invisible to the naked eye). The first of these 

observations he published in Nuncius sidereus (Venice, March 1610), 

sparking incredible excitement. The scientific impact of these 

discoveries, made by Galileo with the telescopes he had crafted, which 

revolutionized man’s view of the Universe, was immediate, as can be 

easily ascertained from the enthusiasm with which a man of Christian 

Huygens’s repute writes about them in Dioptrica, de telescopiis, 1653. 

From the invention of the telescope (objective of large focal distance), the 

invention of the microscope (objective and eyepiece of small focal 

distance) was only one step away, which Galileo also took (1610), along 

with the Dutch inventors, thus becoming one of the precursors of the 

modern compound microscope. The hardships that Galileo went 

through for his discoveries, on account of ignorance and the Inquisition, 

are well known, but the burning flame of reason and science could no 

longer be quenched, because it was already the onset of the 17th century, 

the century of scientific giants: Galileo, Kepler, Descartes, Pascal, 

Fermat, Newton, Leibniz, and Huygens. 

 Kepler, Johannes (1571 – 1630), German astronomer, assistant 

(1600 – 1601) and then successor to Tycho Brahe at the Prague 

observatory. Driven by a passion for precision, and using Tycho Brahe’s 

exact observations, as well as employing great care and perseverance in 

his calculations, which he redid countless times, Kepler uncovered the 

laws governing planetary orbits, which he formulated in his work 

Astronomia nova, Prague, 1609, thus putting an end to a 2000-year-old 

tradition of circular geometrical representation (see S. Olariu, Geneza și 

evoluția reprezentărilor mecanicii clasice, The Scientific and 

Encyclopedic Press, Bucharest, 1987). 

 Kepler did not have the same kind of luck when he used Witelo’s 

erroneous experimental data regarding angles of refraction, from which 

it may be deduced how important the precision of observations and 

measurements is to gaining correct knowledge. In his first work on 

optics, entitled Ad Vitellionem paralipomena, quibus astronomiae pars 
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optica traditur, Frankfurt, 1604, Kepler thus attempts, and almost 

succeeds in discovering the exact law of refraction. To this end, he began 

by considering the issue of Cartesian surfaces, 33 years before Descartes 

wrote La Dioptrique in 1637, for the particular case of a surface that 

would refract a parallel beam of light so that it converges into a 

punctiform image. He had the inspiration to choose a hyperboloid 

surface, which, as we know, meets the requirements of the exact law of 

refraction, but, unfortunately, since he trusted the data found in Witelo’s 

tables, he gave up the project, because his surface did not correspond to 

said erroneous data, which expressed a false relationship between the 

angles of incidence and refraction. 

 Galileo was in correspondence with Kepler, whom he also 

presented with a telescope he had fashioned (1610), by use of which he 

had recently inaugurated the era of great astronomical discoveries. 

Stimulated by these achievements, Kepler resumed his optical research, 

and wrote his second book on the subject, entitled Dioptrice, Augsburg, 

1611, with which he gave significant impetus to the progress of a science 

whose theoretical aspects had been too long neglected. In this written 

work, which comprises 80 pages, and which may be fruitfully read even 

today, based on simple considerations of elementary geometry, Kepler 

laid the fundamental principles of dioptrics within the frame of the 

paraxial approximation (in which the angles of incidence and refraction 

are proportional), with application to thin lenses and doublets, as well 

as triplet lenses. In this context, Kepler formulates the first theory of 

refraction telescopes (for which the paraxial approximation is 

excellently appropriate, since, in practical applications, the light rays’ 

angle of incidence is always very small), and describes five types of 

telescopes, namely: (1) the convex objective/concave ocular doublet (the 

Dutch telescope, or Galilean telescope), (2) the convex objective/convex 

ocular doublet (a system advanced in sentence 88 of the Dioptrice, which 

bears the name Keplerian telescope), (3) the convex objective/double 

concave ocular triplet, (4) the convex objective/double convex ocular 

triplet, and (5) the double convex objective/convex ocular triplet. The 

second telescope described, which Kepler suggested in his work, would 

be in fact constructed several years later (around 1613) by his compatriot, 

the astronomer Cristoph Scheiner (1575 – 1650), who for several years 

would use the invention in order to make the first systematic 
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observations on the movements of sunspots (results which he published 

in his work Rosa Ursina, 1626 – 1630). Unlike Galileo’s telescope, 

Kepler’s telescope was used for astronomical observations (to which the 

fact that the image appeared inverted did not constitute an impediment) 

due to its relatively large angular field of view. Furthermore, Kepler’s 

telescope had the essential advantage of forming a real intermediate 

image, so that, by attaching across its plane two reticular threads 

intersecting along the telescope’s axis, or a graded circle, the telescope 

could be used for precise positioning and measuring. From among the 

people who played an important role in the history of the telescope’s 

invention, we would also like to mention Fontana and Schyrl (or 

Schyrleus). Italian astronomer Francesco Fontana (1580 – 1656), the 

author of Novae celestium terrestriumque rerum observationes, 1646, 

first person to observe the “channels” of Mars, and probably first to 

change the initially concave microscope ocular with the convex ocular, 

also claimed to have had invented the astronomical telescope (Keplerian 

telescope) as far back as 1608. More certainly recognized are the merits 

of astronomer Anton Maria Schyrleus of Rheita (1597 – 1660), the 

inventor of the terrestrial telescope (1645), a convex lens quadruplet 

telescope, or double astronomical telescope, which renders upright 

images of objects. He is also credited with coining the terms objective 

and ocular. Demisiani, a member of the Accademia dei Lincei, is the one 

who coined the names telescope and microscope, which replaced the 

words conspicilia, perspicilia, occhiali, and occhialini that had been 

used up to that moment. 

 Besides introducing the theory of dioptrics and telescopes, Kepler 

also determined the correct path light rays travel within the eye, by 

demonstrating that each cone of rays emitted by the points on the object 

is refracted through the crystalline and recombined into the 

corresponding image point on the retina; sight is thus the sensation of 

retinal stimulation, and thus the analogy between the eye and the 

camera obscura with its convergent lens is correct. All this theory of 

sight was formulated by Kepler in his first work on optics of 1604, and 

was soon afterwards confirmed experimentally by Scheiner (who 

constructed the above mentioned Keplerian telescope) in a remarkable 

work, Oculus, hoc est fundamentum opticum, 1610. Scheiner wrote that 

the refractive index of the aqueous humor is equal to that of water, and 
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that the index of the vitreous humor is approximately equal to that of 

glass; it is also in this work that he describes his famous cow’s eye 

experiment. By removing the posterior sclera and choroid, and looking 

through the back of the eye as if through the objective of a telescope, he 

very clearly saw the image of distant objects on the transparent retina. 

Later on, in 1625, he made the same demonstration using a human eye. 

This decisive and quite enlightening experiment proved once and for all 

that the locus of sight is on the retina. Scheiner simultaneously 

explained how the eye adapts by modifying the shape of the crystalline 

lens (an effect which he obtained in the abovementioned experiment by 

gently pressing on the eye), which becomes more convex (more curved) 

when looking at closer objects, and less convex (more flattened) when 

looking at objects farther away. We are approaching a culminating point 

in geometrical optics, when the simple and exact law of refraction, 

 

sin 𝑖

sin 𝑟
= 𝑛 , 

 

was once again “in the air”. It had once floated above the Greek 

astronomer and mathematician Ptolemy (150), had circled around the 

Arab mathematician and physicist Alhazen (1025), and had slipped 

through the hands of Polish physicist Witelo (1274), as we’ve shown in 

the previous pages. Now it was freely presenting itself to the great 

discoverer of laws himself, Kepler, in the form of a pressing need to 

finally understand the functioning mechanism of these strained 

achievements of the empirical, the eyeglasses, microscope, and 

telescope. All that was needed for it to be discovered was the sufficiently 

precise measuring of two angles: the angle of incidence 𝑖, and the angle 

of refraction 𝒓 . And these measurements were once again taken by 

Kepler (Dioptrice, 1611), who, however, only ended up with the same 

results inherited from Ptolemy, that for angles of incidence not 

exceeding around 30°, it can roughly be said that 𝑖/𝑟 = 𝑛 , where, for 

light traversing through air into glass, n = 3/2 . However, he also 

discovered the critical angle of total reflection, which for glass-air 

reflection is around 42°. From here onward, Witelo’s erroneous data 

conspicuously contradicted experience. Unfortunately, Kepler never 

recalled the issue he had approached seven years earlier, in his first work 
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on optics of 1604. And so, Kepler, too, was not fortunate enough to 

discover the true law of refraction, in spite of the opportunity which had 

presented itself, a surprising development for a scholar of his stature. 

 But time had lost its patience, and the capricious law wrote itself 

(and, essentially, using no other means than those that had been 

available for almost 1500 years) through the hands of Snell (around 

1621), in the form cosec r/cosec i = n, and through Descartes (1637), in 

the form sin i/sin r = n. Thus, fig. A.1, considered within the plane of the 

ray of incidence AI and the ray of refraction IB, in the case of air-glass 

propagation (n=1.5), illustrates both “expressions” of this law, namely 

Snell’s formula, who wrote IB/IE = n, and Descartes’s version, who 

wrote IC/ID = n. 

 Snell, Willebrord van Roijen, 

lat. Snellius (1591 – 1626), Dutch 

mathematician, professor at Leiden, 

known for his works on spherical 

trigonometry and triangulation, also 

wrote a work on optics, in which he 

set forth the law of refraction in the 

form of the ratio between cosecants, its value in the case of air-water 

refraction being correctly calculated as IB/IE = n = 4/3. It is plausible to 

assume that Snell obtained this law using more precise angle 

measurements, and that he drew the idea of expressing it in this form 

from Ctesibius’s “coin in a cup” experiment (the apparent rising of the 

bottom of a container filled with water, 50 BCE). The fact is that no one 

knows how Snell thought of, and determined, the law that opened the 

way for modern optics in one fell swoop, because his writings on optics 

were never published. It would be interesting to imagine what our 

scientific and technological evolution might have been if this path had 

been set by Ptolemy, Alhazen, or at least Witelo. As Huygens has 

remarked, it seems that Snell did not really understand the importance 

of his discovery. Fortunately, Huygens, who read Snell’s manuscript (as 

did Isaac Voss, to whom we will refer presently), fittingly cited it in his 

first book on optics, Dioptrica, of 1653. 

 Descartes, René du Perron, lat. Cartesius, Renatus (1596 – 1650), 

French mathematician, the founder of geometric analytics, wrote an 

interesting book on optics, La Dioptrique, 1637, in which he expressed 
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the exact law of refraction in its actual form of sinus ratio. The way in 

which Descartes tried to explain this law using an ad hoc mechanical 

analogy that assumed the refraction of small revolving globules is, 

however, another issue. Thus, he essentially assumed, as Newton would 

soon do, that light consists of particles, and explained refraction (as well 

as reflection), as normal forces acting upon these particles at the level of 

the separating surface. Consequently, the tangential speed of light 

particles remained unchanged, that is, 𝑉𝑖 sin 𝑖 =  𝑉𝑟 sin 𝑟, from which is 

derived the following expression of the law of refraction: 

 

sin 𝑖

sin 𝑟
=  

𝑉𝑟

𝑉𝑖
= 𝑛 . 

 

 This equation implies that, upon passing into a denser medium 

(𝑖 > 𝑟), the speed of light particles increases (𝑉𝑟  > 𝑉𝑖), and vice-versa, 

something which seems to contradict common sense, but we will return 

to criticism of the corpuscular model of light at a later time, when we 

discuss Fermat. For now, using the exact law of refraction, in chapter 8 

of his book, La Dioptrique, Descartes brilliantly solved the problem 

which Kepler failed to do in 1604, and described the surfaces (henceforth 

known as Cartesian surfaces, or Cartesian ovals) which, by definition, 

ensured rigorous stigmatism for pairs of points, conical sections being 

an important particular case of this. As we’ve observed at the relevant 

time, these surfaces found a wide field of application in the crafting of 

reflective telescopes and aspheric lenses. It is remarkable that Descartes 

suggested the use of hyperbolic lenses for perfecting the telescope, and 

designed a machine for grinding this type of lens, by use of which, in the 

same period, the optician Ferrier of Paris crafted the first convex 

hyperbolic lens. The crystalline lens was also an object of study for 

Descartes, who conducted numerous anatomical dissections of the eye, 

and confirmed Kepler’s conclusion, that the retina is the photoreceptor 

of images, and Scheiner’s experiments, which he had  conducted on 

cow’s eyes and the human eye; moreover, he curved the crystalline of 

eyes prepared beforehand, stretching it by gently applying pressure, and 

observed that a clearer image of close objects then formed on the 

transparent retina, a fact which permanently elucidated the mechanism 

of sight adjustment.  
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 Finally, let us mention 

Descartes’ brilliant contribution 

to formulation of the geometric 

quantitative law of the rainbow 

(Les Météores, 1637), the most 

frequently occurring and grand 

natural optical phenomenon, 

caused by the refraction of 

sunlight in rain water droplets, as 

illustrated in figure A.2. 

Naturally, this phenomenon has 

been described as early as 

Antiquity (Aristotle, 350 BCE; 

Seneca, 50 BCE), but it was much 

later that Witelo (1274) attempted 

to explain it through refraction, 

and finally Dietrich of Freiberg, 

latin Theodoricus Teutonicus of 

Vriberg in his work De luce et 

ejus origine, de coloribus, de iride 

et radialibus impressionibus 

(1311) advanced the correct qualitative explanation of the rainbow that 

entailed sun rays refracting twice within the spherical water droplets, 

and reflecting once in the case of the primary (inner) arc, and twice in 

the case of the fainter secondary (outer) arc, since the light’s intensity 

diminishes after each reflection. Unfortunately, this work, remarkable 

for the 14th century, remained hidden in a monastery, and then within 

the public library of Basel, undiscovered for centuries, until Giovani 

Battista Venturi (1746 – 1822), the Italian physician known for his 

treaties on hydraulics – the same one who made available some of the 

remaining manuscripts and scientific work of Leonardo da Vinci in 1797 

– put it into circulation through his work Commentari sopra la storia e 

la teoria dell’opttica, Bologna, 1814. Thus it was that Maurolico (1575), 

who also measured the angle between the incident sunrays and those 

that emerged – 𝜑1 = 40° − 42° for the primary arc and 𝜑2 = 50° − 53° 

for the secondary arc – failed in his attempt to explain the phenomenon, 

and Marcus Antonius de Dominis (1566 – 1624), in his work De radiis 
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visus et lucis in perspectivis et iride, published in 1611 in Venice, 

demonstrated experimentally (simulating a rainbow in similar 

conditions, with the use of spheres filled with water and conveniently 

illuminated by the Sun) that the sunlight’s path guessed by Dietrich of 

Freiberg in 1311 was valid. It is not clear whether Dominis had seen 

Dietrich’s work, or whether Descartes was aware of his two 

predecessors, but Descartes (Les Météores, 1637) also undertook the 

experiment using glass spheres filled with water, and was surely the first 

to use the exact law of refraction to draw up the path of light illustrated 

in the figure above. However, beside this figure, drawn for 𝑛 = 4/3, with 

just a few rays, Descartes manually calculated the paths of 10 000 (!) rays 

for 𝑛 = 250/187 ≈ 1.3369 , and identified the angles of extreme 

deviation 𝜑1 = 41.5° for the main arc and 𝜑2 = 51.9° for the secondary 

arc. Obviously, it is only at angles close to these values that the emerging 

rays constitute parallel beams and effectively contribute to the two arcs 

of the rainbow, as seen by an observer located at a distance*. Beyond this, 

however, Descartes was not able to explain the colors of the rainbow and 

why exactly these colors, which form a sequence from violet (V) to red 

(R), are displayed in reverse order across the two arcs (see figure), but 

the mainstay of the theory was already firmly placed into position (the 

theory of white, or colorless, arcs). Newton will be the one to explain the 

colors of the rainbow. In his enlightening experiments using glass 

prisms, he discovers that white light is composed of numerous colored 

rays of different degrees of refrangibility (Opticks, London, 1704, 

translated into Romanian by Prof. Victor Marian with the title Optica, 

Romanian Academy Press, Bucharest, 1970, in which Newton’s theory 

of the rainbow may be found on pages 110 through 116). Newton’s 

                                                           
*  Descartes’ problem concerning the spherical droplet can be easily solved analytically, using the 
method of maximum or minimum deviation. Thus, by writing 𝑖 for the angle of incidence, 𝑟 for the 
angle of refraction, and 𝑘 for the number of internal instances of reflection, and referring to elementary 
notions of geometry, we obtain the formula 𝜙 = 2(𝑖 − 𝑟) + 𝑘(𝜋 − 2𝑟) for the angle between solar and 
emerging rays, and 𝜑 = 𝜋 − 𝜙 for the angle of observation. Using the formulas for the law of refraction 
sin 𝑖 = 𝑛 sin 𝑟 and cos 𝑖  𝑑𝑖 = 𝑛 cos 𝑟  𝑑𝑟, and referring to the condition of extreme variation 𝑑𝜑/𝑑𝑖 = 0, 
we get 

sin 𝑖 = √
𝑛2 − 1

(𝑘 + 1)2 − 1
 

Thus, for example, for 𝑛 = 4/3 and 𝑘 − 1 we get 𝑖1 = 59.38°, 𝑟1 = 40.2°, 𝜙1 = 137.97°, so 𝜑1 = 42.2°. 
Similarly, for 𝑘 = 2, we get 𝜑2 = 52.5°. 
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theory is in fact merely an extension of Descartes’ theory, namely its 

application for each color composing white light, as can be seen in the 

table below (calculations done by Newton): 

 

  main arc secondary arc 

Violet 𝑛 = 109/81 ≅ 1.3457 40°17′ 54°7′ 

Red 𝑛 = 108/81 ≅ 1.3333 42°2′ 50°57′ 

 

And so it was that using the exact law of refraction Descartes and 

Newton explained numerically the main features of this fascinating 

phenomenon that is the rainbow. In this context we must also mention 

another name forgotten by history, Johannes Marcus Marci de Kronland 

(1595 – 1667), who in his work dedicated to the rainbow Thaumantias 

Iris, liber de arcu coelesti, deque colorum apparentium natura, ortu et 

causis, published in Prague in 1648, he first made the connection 

between color and the deviations brought about through refraction, by 

observing the spectrum of white light (iris trigonia) produced by a 

triangular prism (trigonum) placed before the opening of a dark 

chamber. Marci’s contribution was acknowledged after as much as 300 

years passed from his death (the Thirty Years’ War made impossible the 

flow of ideas between Central and Western Europe). 

 The issue of who first discovered the law of refraction has been 

much debated in literature, up to the present time. It began with 

Christian Huygens and Isaac Voss, both Snell’s countrymen. Huygens 

suspected, and Voss violently accused Descartes of having previously 

read Snell’s manuscript (“quae et nos vidimus aliquando et Cartesium 

vidisse accepimus, ut hinc fortasse mensuram illam quae in sinibus 

consistit elicuerit”*, Huygens, Dioptrica, 1653), of plagiarizing Snell’s 

law, and of purposefully making up the theory of light globules in order 

to mask the plagiarism (Vossius, De lucis natura et proprietate, 1662). It 

seems strange that these assertions were made as late as three and twelve 

years after Descartes’ death, respectively. It’s true that Descartes 

traveled extensively throughout Europe, and that he was a permanent 

resident of the Netherlands for 20 years (1629 – 1649), where he lived in 

13 cities, among which Leiden (in 1630), where Snell had lived. Later 

                                                           
* “which we have also seen and which we know Cartesius saw, and from which perhaps were taken 
those measures of the ratio of sines”. 
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studies regarding this controversy (P. Kramer, Abhandlungen zur 

Geschichte der Mathematik, No. 4, pp 233 – 278, Teubner, Leipzig, 1882; 

H. Boegehold, Keplers Gedanken über Brechungsgesetz und ihre, 

Einwirkung auf Snell und Descartes, Ber. Naturwiss, Ver. Regensburg, 

19, 150 (1928 – 30); M. Herzberger, Optics from Euclid to Huygens, 

Applied Optics, 5, 1383 (1966)) revealed by referring to Descartes’ letters 

that he had been preoccupied with aspheric plano-hyperbolic lenses 

since 1627. Since such a lens stigmatically foci the image of an object 

located at a distance precisely because its hyperbolic surface is defined 

by the law of the sine, it can be justly assumed that Descartes was aware 

of the law of refraction three years before his visit in Leiden in 1630. 

Consequently, it is fair that this law, which proved crucial in later 

developments in the field of optics, as well as within the general sphere 

of the sciences, be named the Snell-Descartes law, without neglecting to 

mention Kepler, who had come so close to its discovery, or Witelo, 

Alhazen, and Ptolemy, who had had the means of discovering it much 

earlier. 

 There can be no doubt that Kepler and Descartes’ laying of the 

theoretical foundation for dioptrics was greatly aided by the telescopes 

and microscopes crafted by mere chance at so late a time as the 1610s, 

after many centuries of polishing glass and crystals, and crafting lenses 

or objects similar to these. But no less true is the fact that the fundamental 

law of geometrical optics publicly communicated by Descartes in 1637 

was a powerful impetus that allowed the scientific world to overcome 

its millennia-old state of stagnation. We will first witness the 

metamorphosis of the law of refraction into an even more general law of 

geometrical optics, Fermat’s principle (1657), which bore profound 

conceptual implications with respect to the variational formulation of 

natural laws. Evincing the same sort of eagerness to make up for lost 

time, science moved on to the designing and crafting of high-

performance telescopes (Gregory, Newton, Cassegrain, Hooke, Huygens, 

Hadley, Dollond, Herschel), with their well-known impact on the new 

post-telescopic version of astronomy and on our representations of the 

Universe, as well as the introduction of the microscope (Hooke, 

Leeuwenhoek), which allowed high-precision micrographic and 

anatomical observation. New facts were quickly accumulated, regarding 

subtler light-related phenomena such as diffraction (Grimaldi), 
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interference (Hooke), dispersion (Marci, Newton), birefringence 

(Bartholinus), the speed of light (Römer, Bradley), in a period of 

unprecedented intellectual fertility, crowned by Newton’s and 

Huygens’ genius. Unlike the preceding period, in which scientists had 

mostly done their work individually, from this time onward they begin 

to interact with considerably increased frequency, as the exchange of 

ideas proved extremely favorable to making new discoveries. The 

sciences finally begin to flourish, and, despite all the fluctuations and 

instabilities inherent to their time, the first powerful scientific societies 

take shape with the Royal Scientific Society of London, 1662, with its 

famous publication Philosophical Transactions of the Royal Society 

(begun in 1665), and with the Scientific Academy of Paris, 1664, with its 

publication le Journal des Savants (begun in 1665), followed by the 

academies of Bologna (1712), Berlin (1720), Petersburg (1725), Uppsala 

(1725), Stockholm (1739), Copenhagen (1743), and so on. Let us next 

outline the great moments of the post-Cartesian period. 

 Fermat, Pierre de (1601 – 1665), French mathematician, founder of 

modern number theory and early proponent of infinitesimal calculus (he 

developed Kepler’s method, according to which variations of functions 

are null in the vicinity of maxima and minima). He engaged in fierce 

debates with Descartes, on the issue of curve maxima and minima, as 

well as with respect to the way in which Descartes “demonstrated” the 

law of refraction and reached the conclusion that the speed of light 

(particles) is greater in denser media. In truth, if we were to consider this 

controversy from a 20th century perspective, the Descartes-Newton 

corpuscular model of light may be easily modified and adapted to the 

experience which has been attained up to the present moment. For this, 

it is sufficient to write the conservation of the tangential component of 

momentum (and not of speed), i.e. 𝑝𝑖 sin 𝑖 = 𝑝𝑟 sin 𝑟, which gives the law 

of refraction in its correct form 

 

sin 𝑖

sin 𝑟
=

𝑝𝑟

𝑝𝑖
= 𝑛 , 

 

which cannot be written as 
sin 𝑖

sin 𝑟
=  

𝑉𝑟

𝑉𝑖
= 𝑛 , since the momentum of 

photons (i.e. light particles) cannot be expressed as the product 𝑝 = 𝑚𝑉. 
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As we know, (Einstein - de Broglie), 𝑝 ∼ 1/𝜆 = 𝑣/𝑉 ∼ 1/𝑉 where V is the 

phase velocity of the monochromatic light wave. Thus, the correct 

expression of the law of refraction can also take the form 

 

sin 𝑖

sin 𝑟
=

𝑉𝑖

𝑉𝑟
= 𝑛 , 

 

or, if defining the absolute index of refraction as 𝑛𝑖,𝑟 = 𝑐/𝑉𝑖,𝑟, associated 

with passage from vacuum to any medium, 

 

sin 𝑖

sin 𝑟
=

𝑛𝑟

𝑛𝑖
= 𝑛 , 

 

where 𝑛  (simple) is the relative index of refraction, associated with 

passage from the considered medium (𝑖) to medium (𝑟). But all these 

representations were not this clear at the time of the search for concepts 

during the famous Descartes versus Fermat dispute, which was taken 

up again between Newton and Huygens, and then, reaching a scale of 

hundreds of years, between the 18th and 19th centuries, until the 20th 

century reconcilement of (or postponement of debate regarding) the 

wave-particle duality. We may ask why an experiment was never 

conducted from the start to decide if, for example, light traveled at a 

greater speed in water than in air, as it could be concluded from 

Descartes’ original formula, or if it was the other way around, as Fermat 

would have it. The answer would be that the experimental techniques 

available throughout the 17th and 18th centuries were not suitable for 

measuring the variation of the speed of light in traversing denser media. 

It was only possible to determine the speed of light in vacuum, using 

astronomical methods (Römer, 1676, and Bradley, 1727), as we shall 

soon see. It was not until the 19th century (the century of wave optics), 

that it became possible to prove experimentally, under terrestrial 

conditions, that the speed of light is greater in the air than in denser 

media, such as water (Fizeau and Foucault, 1850). But at that time the 

wave model of light had already been consolidated through the 

demonstrating and elucidating of its distinctive phenomena of 

interference (Young’s experiments, 1802 – 1804), diffraction (Fresnel’s 

theory and experiments, 1818), and polarization (the transverse nature 
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of light waves, Young and Fresnel, 1820), advancing with great strides 

towards the epitome of its glory, the electromagnetic theory of light 

(Maxwell, 1873 and Hertz, 1887). In the 17th century, however, it would 

have been risky to advance any hypothesis regarding the subtle nature 

of light based solely on the observational and experimental data 

available at that time. Of course, it has sometimes happened that certain 

statements have subsequently been confirmed, as is the case with 

Descartes’ suggestion that light curves upon passing massive celestial 

bodies, which anticipated Einstein’s conclusions by close to 300 years*. 

However, the only sound basis on which to further the knowledge of 

luminous phenomena was the exact mathematical expression of the law 

of refraction, whose experimental confirmation in the media of glass, 

crystals, water, and many other liquids had become a common endeavor 

after the publication of Descartes’ work on optics. At first, Fermat was 

convinced that the law itself was false, but experimental evidence soon 

became so unequivocal, that the only thing left to do was to unravel the 

mystery of Descartes’ corpuscular model, based on which he had indeed 

reached the formally exact law, which, however, yielded the paradoxical 

conclusion that light encountered less resistance in a denser medium 

than in a more rarefied one. After many years of searching, Fermat 

eventually recalled Hero’s principle of the shortest path of light (50 CE), 

and managed to eliminate the speed paradox, formulating a great 

postulate (see his posthumously published works, Varia opera 

mathematica, p. 156, Toulouse, 1679), known as the principle of least 

time, or Fermat’s principle (1657). First expressed in its Heronian form, 

“… que la nature agit toujours par les voies les plus courtes” (in a 

Toulouse letter, August 1657), and then in its general form, that also 

encompasses refraction, namely that the path taken between two points 

by a ray of light is the path that can be traversed in the least time (in a 

Toulouse letter, 1st of January 1662), with the later addition that the 

interval in which light propagates is stationary (minimal, maximal, or 

constant), this principle constitutes the most concise law of geometrical 

optics. From it first follow all the laws pertaining to refraction, reflection, 

                                                           
* What’s more, today’s astronomers have discovered veritable gravitational mirages (“double quasars” 
and “multiple quasars”), that they explain are produced through the deformation, amplification and 
multiplication of far-off bodies, effected by the mass of galaxies located close to the trajectory of light 
rays (see Alain Blanchard, Les mirages gravitationnels, La Recherche, 1987). 
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and linear propagation in homogenous media that had been formulated 

up to that point in time. Moreover, by way of addition of infinitesimal 

intervals of time, it becomes much more general and may be applied to 

curvilinear paths along any non-homogenous medium. Thus, for 

example, in a case of refraction at a surface separating two homogenous 

media, we have 

 

𝑡𝑖 + 𝑡𝑟 =
𝑠𝑖

𝑣𝑖
+

𝑠𝑟

𝑣𝑟
= stationary, 

 

from which the same law of the ratio of sines may be deduced, but in its 

physically acceptable form sin 𝑖 / sin 𝑟 = 𝑣𝑖/𝑣𝑟 = 𝑛. In its more general 

form, which would also apply to non-homogenous media, Fermat’s 

principle is written as 

 

∫ 𝑑𝑡

𝑡2

𝑡1

= ∫
𝑑𝑠

𝑣

𝑝2

𝑝1

= stationary. 

 

The conceptual leap that Fermat achieved is evident, from a sine law that 

directly imitates the geometry of refraction (and which by itself 

constitutes a simple rule that replaces interminable goniometrical 

tables), to a single principle that governs the behavior of light rays in any 

situation. Fermat’s concept of building up the edifice of natural law 

based on an integral principle of extrema greatly inspired his renowned 

successors Leibniz, Jean and Jacques Bernoulli, Maupertuis, Euler, 

Lagrange, Hamilton, Jacobi, up to Feynman in the second half of the 20th 

century. 

 So it was that Gottfried, Wilhelm Leibniz (1646 – 1716) again took 

up the issue in the Aristotelian spirit that „nature does nothing in vain,” 

and advanced the principle of least effort (Acta Eruditorum, Leipzig, 

1682), where by effort he meant mechanical work, namely the product 

between the force of resistance R encountered by light in a medium and 

the distance traversed s. By applying infinitesimal calculus (which he 

had developed in a race against Newton) to his principle 𝑅𝑖𝑠𝑖 + 𝑅𝑟𝑠𝑟 = 

minimal, he reached the expression 𝑅𝑖𝑑𝑠𝑖 + 𝑅𝑟𝑑𝑠𝑟 = 0, from which, by 

expressing the path-related elements using angles, could be deduced the 
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law of sine ratio in the form sin 𝑖 / sin 𝑟 = 𝑅𝑟/𝑅𝑖 , which meant that 

resistance was greater in denser media. So nothing essentially new 

compared to Fermat’s results if we simply base our judgment on the 

hypothesis that 𝑣 ∼ 1/𝑅 . But, in order to illustrate how difficult and 

slippery the way of physical concepts and representations is, let us recall 

that Leibniz made the incredible supposition that 𝑣 ∼ 𝑅 (based on an 

analogy to the flow of a river being greater at the narrower points of its 

course). Leibniz’s surprising choice may be justified especially if we 

consider the trend of thinking dominant in his time, imposed by the 

authority of Descartes and Newton, which stated that light traveled at 

greater speeds in denser media, but also if we take into account the fact 

that the generous formalism introduced by Fermat in geometrical optics 

would momentarily be taken up in its kindred fields of study, in 

mathematics and mechanics. For Jean Bernoulli (1667 – 1748) would 

formulate his famous brachistochrone problem (Acta Euroditorum), 

Leipzig, 1696), to which he would also give the solution by making an 

analogy to geometrical optics, which his older brother Jacques Bernoulli 

(1654 – 1705) would go further and reformulate for a wider category of 

problems, thus laying the foundations of the calculus of variations. 

Pierre Louis Moreau de Maupertuis (1698 – 1759) similarly took up 

Leibniz’s idea and formulated the principle of least action (Mémoires de 

l’Académie de Paris, 1740, 1744), where by action he meant the product 

between a particle’s momentum 𝑚𝑉 (not necessarily a particle of light) 

and the distance traversed s. This new principle may be expressed as 

𝑉𝑖𝑠𝑖 + 𝑉𝑟𝑠𝑟 = minimal, and, as we have seen, yields the Cartesian law in 

its primitive form sin 𝑖 / sin 𝑟 = 𝑉𝑟/𝑉𝑖. But the great discovery was that, 

although this principle did not apply to light rays in geometrical optics, 

it was suitable for trajectories of mechanical motion. Actually, the 

precise expression of Maupertuis’s principle, applicable to a particle’s 

motion in a conservative field, was given by Leonhard Euler (1707 – 

1783) in Methodus inveniendi lineas curvas, maximi minimive 

proprietate gaudentesi, Lausanne et Genève, 1744: 

 

∫ 𝑉𝑑𝑠

𝑝2

𝑝1

= stationary, 
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and for more general conditions, by Joseph Louis Lagrange (1736 – 1813) 

in Mécanique Analytique, 1788, by William Rowan Hamilton (1805 – 

1865) in On a General Method in Dynamics, Philosophical Transactions 

of the Royal Society, 1834, by Karl Gustav Jacob Jacobi (1804 – 1851) in 

Vorlesungen über Dynamik, 1866, for classical mechanics, up to Richard 

Phillips Feynman (1918 – 1988), in Space-Time Approach to 

Non-Relativistic Quantum Mechanics, Reviews of Modern Physics, 20, 

367 (1948), and in Quantum Mechanics and Path Integrals, 1966, for 

quantum mechanics. And so, the elegant variational formulations of 

natural laws and the associated Lagrangian and Hamiltonian formalism 

dominated the physics of 19th and 20th centuries. Such was the 

conceptual enlargement that sprang from Fermat’s principle. Of course, 

we may add post festum that if Hero had extended his principle of the 

minimum to refraction, then it would have been he who authored what 

is now known as Fermat’s principle, but, like Ptolemy faced with the law 

of the sines, he missed his great chance of jumping past thousands of 

years’ time. 

 Let us return to practical applications and observe that the 

achievements of dioptrics first unlocked the practical possibilities of 

catoptrics. Thus, the main flaw of the first telescopes, namely the 

chromatic aberrations (the image’s iridescence), as well as the degree of 

perfection that had been reached with metallic concave mirrors, used as 

early as Antiquity (see the legends concerning Archimedes’ mirrors or 

the lighthouse of Alexandria, or even the supposed mirror instrument of 

Ragusa), led to the concept of the reflective telescope, first proposed in a 

form using spherical reflector by Nicolaus Succhius (Optica 

philosophica, 1616), then in a parabolic reflector version by Marin 

Mersenne (Cogitata phisico-mathematica, 1644), but effectively 

designed by the Scottish mathematician James Gregory (1638 – 1675) in 

his memoir Optica promota (1663), in which he describes the version 

that bears his name (using a parabolic main mirror and an elliptical 

concave secondary mirror). In turn, Gregory’s work inspired Robert 

Hooke (1635 – 1703), who effectively built Gregory’s telescope, but with 

the use of spherical mirrors (Philosophical Transactions of the Royal 

Society, 1674), Giovanni Cassegrain (1625 – 1712), who described his 

shorter version (using a hyperbolic convex secondary mirror) in Journal 

des Savants (1672), and the then-young Isaac Newton (1642 – 1727). As 
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early as 1666, Newton had discovered the phenomenon of the dispersion 

of light, or, in his terminology, the phenomenon of different refringence 

of light rays of various colors, based on which he had concluded that it 

was impossible to design perfect telescopes, that is, telescopes that 

would show clear, non-iridescent images in white light. This conclusion, 

known as “Newton’s error,” (see Chapter II, section 2.7), based on the 

assumption that the relative dispersion of light is the same in all glasses, 

caused Newton to believe that the problem of creating an achromatic 

lens telescope was insoluble. But even this error came to a happy 

conclusion when Newton set out to build, with his own hands and a 

level of skill that may be envied even today, the reflective telescope that 

bears his name, achieving a visual augmentation of 30 – 40X, using an 

instrument only 6 inches long and 1 inch in diameter (Phil. Trans. Roy. 

Soc., 1672). This history of Newton’s telescope, as well as the entirety of 

his invaluable contributions to the experimental research concerning 

optical phenomena, are worth studying directly in their author’s works 

(see Isaac Newton, Optica, Romanian Academy Press, Bucharest, 1970). 

The Royal Society of London bears the honor of having appreciated 

Newton to his full merits. He was elected member during the session of 

the 11th of January 1672, and his telescope was exhibited in the Society’s 

Library, where it can be found even today, alongside the inscription 

“Invented by Sir Isaac Newton and made with his own hands, 1671.” But 

the first reflective telescopes, designed by Hooke and Newton, were 

small experimental models, and their value lay only in the path towards 

greater performance along which they pointed. The first such larger 

telescopes which proved to be of practical use were fashioned as much 

as 50 years later, in Newton’s design (in 1723), as well as following 

Gregory’s model (in 1726), by John Hadley (1682 – 1744). But the 

advantage mirrors held over lens (the elimination of chromatic 

aberrations and far greater magnifying power) further spurred the 

search for yet greater performance. So it was that the most powerful 

telescopes of the following period were built by the famous English 

astronomer Sir William Herschel (1738 – 1822). Among them, his great 

telescope with a focal distance of 12 meters (Phil. Trans. Roy. Soc., p. 

347, 1795), built following a personal design, which bears his name, and 

is still used today. With the help of these wonderful devices, Herschel 

discovered the planet Uranus (thus doubling the extent of the known 
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solar system), as well as over 800 double stars (referring to which he 

demonstrated that binary stars revolve around each other in accordance 

with Newton’s law of gravity), he observed and catalogued around 2,500 

nebulae, or clusters of stars, and made the sensational discovery of the 

“invisible light” of the Sun’s infrared spectrum (Phil. Trans. Roy. Soc., 

p. 292, 1800; by exposing thermometers to light from different areas of 

the solar spectrum, he observed that the temperature indicated became 

greater as he moved the thermometer from violet to red, and reached its 

maximal value within the invisible area, known today as infrared). 

 It is remarkable that determining the speed of light (in vacuum), 

one of the greatest achievements in the field of optics, was first possible 

using the astronomical methods developed in the 17th century (Römer, 

1676, and Bradley, 1727). Until the year 1676, it was not known whether 

or not light travelled instantaneously, and, if it didn’t, how great its 

speed might be. Beginning with Antiquity, the dominant view became 

that of Hero (Catoptrica, around 50 CE), who believed, on the grounds 

of analogy to the trajectory of an arrow shot with increasingly greater 

speed, that the speed of light, which travels on a linear path, must be 

greater than the speed of any given terrestrial body. Descartes (La 

Dioptrique, 1637) believed that, if the speed of light were finite, then, by 

interacting with the orbital speed of the Earth, we should be able to 

observe an apparent movement of the “fixed stars” across the celestial 

sphere (this effect, termed stellar aberration, was indeed discovered by 

Bradley in 1727, after 90 years). Galilei’s attempt (1638), using light 

signals exchanged between two terrestrial observers located at a 

distance of around 3 km, failed, naturally, because it took a very short 

time for light to travel between them. And so, we arrive at the Cassini – 

Römer moment (1675 – 1676), at the moment of Italian-born astronomer 

Giovanni Domenico Cassini (1625 – 1712), member of the French 

Academy and of the Royal Society, the first director of the Astronomical 

Observatory of Paris, which he administered for 40 years (1671 – 1711), 

with a prodigious career (around 200 scientific advancements, among 

which, the discovery of Saturn’s 4 satellites and the study of the planets’ 

rotation around their own axes) and of Danish astronomer Olaf 

Christensen Römer (1644 – 1710), himself a member of the French 

Academy, who later (1681 – 1710) would become professor at the 

University of Copenhagen, head of its Astronomical Observatory, and 
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even the city’s mayor (1705). In August of 1675, Cassini announced “la 

seconde inégalité" in the motion of Jupiter’s satellites, an effect which he 

wrote “seems to be caused by the fact that light requires a certain interval 

of time to reach us from the satellites, and that it takes 10 – 11 minutes 

for it to traverse a distance equal to the radius of the Earth’s orbit.” 

 As has been known since Galilei’s time (1610), Jupiter’s satellites 

complete their revolution in several days (for example, its first satellite, 

Io, the one closest to the planet, completes its revolution in 42 hours, 28 

minutes, and 16 seconds, and its orbit around Jupiter is virtually 

coplanar with Jupiter’s orbit around the Sun). Cassini’s observed 

irregularity consisted of the fact that the time between two successive 

eclipses of Jupiter’s 

satellites increases and 

decreases according to 

the periodical increase 

and decrease, 

respectively, of the 

distance between 

Jupiter and the Earth, as 

they follow their 

respective orbital paths 

around the Sun (see 

figure A.3). Römer and Cassini’s observations in the year 1676 showed 

that Jupiter’s first satellite emerged from the planet’s shadow (it “arose”) 

10 minutes later in November than in August, that is, after a quarter 

year, in which time the distance between the Earth and Jupiter 

practically increased by the length of the terrestrial orbit radius, thus 

confirming the conclusion Cassini had reached the preceding year. 

Based on this delay, caused by the propagation of light, and on the data 

then available regarding the radius of Earth’s orbit, Römer calculated the 

speed of light at around 214,000 km/s, a truly large value, but still finite 

(the 10-minute delay was overestimated; the current data show that light 

traverses the 149.106 km distance between Sun and Earth in 8.35 

minutes, which means that c ≈ 300,000 km/s). It would be interesting to 

note that Descartes’ argument regarding stellar aberrations, formulated 

almost 40 years prior, had so strong an influence, that Cassini, the first 

proponent and co-author of the first method used to calculate the speed 

1675 



 

Ioan Ioviţ Popescu 
Optics 

I. Geometrical Optics 

176 

 

of light, denounced this result, and that Römer was left to announce it 

alone, to a general reaction of fierce hostility, during the Science 

Academy assembly on the 21st of November 1676, and then publish it in 

the Journal des Savants edition of 7 December 1676 and in the 1677 

Philosophical Transaction of the Royal Society. This discovery was, 

however, not recognized by the scientific community of the time until 

the Cartesian objection was satisfied in 1727, when British astronomer 

James Bradley (1693 – 1762), professor at Oxford University and member 

of three academies (the Royal Society of London, the French Academy 

of Sciences in Paris, and the German Academy of Sciences at Berlin), 

finally discovered the 

phenomenon of stellar 

aberrations (Phil. Trans. 

Roy. Soc., 35, p. 637, 1728). 

By carefully observing the 

positions of stars γ and δ of 

the Draco constellation, 

located virtually at the pole 

of the Earth’s ecliptic, 

Bradley discovered that they 

indeed each describe a small 

ellipsis over one year’s time, 

with an angular diameter of 

2α ≈ 40". By analogy to the necessary inclination of an umbrella during 

rain (see Fig. A.4), the effect of stellar aberration would mean the 

observation telescope is inclined at 20" =  α ≈ 20″ = 10−4 radians. And 

so, Bradley obtained: 

 

𝑐 ≅
𝑉

𝛼
≅

30

10−4
𝑘𝑚/𝑠 = 300,000𝑘𝑚/𝑠 

 

thus confirming Römer’s results, and decidedly determining the value 

of the first universal constant. More than 100 years would pass before 

Armand Hippolyte Louis Fizeau, with his cogged wheel (C. R. Acad. Sci., 

Paris, 1849), and Jean Bernard Léon Foucault, with his rotating mirror 

(C. R. Acad. Sci., Paris, 1850), would inaugurate a series of terrestrial 

measurements of c, whose currently accepted value (determined in 1970) 
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is 

 

𝑐 = 299,792.458 𝑘𝑚/𝑠, 

 

with an error of 300 m/s at most, that is, a 0.0001% error. A considerable 

number of experiments have been undertaken to more precisely 

determine the exact speed of light. Because of its high value, the use of 

great distances or small time intervals is necessary. Alternatively, one 

can measure the λ0 wavelength in a vacuum of an electromagnetic wave 

of known frequency ν, and calculate the speed of light using the simple 

formula c = νλ0. In fact, the entire arsenal of classical and quantum 

electrical devices of the 20th century have been used to calculate this 

value, as a sort of performance test, because of its importance in the 

whole evolution of physical theories. Is light "fast"? We may get a sense 

of its speed by simply considering the fact that it takes 8 minutes for light 

from the Sun to reach us, as we have seen, that it reaches us from the 

next closest stars (Alfa Centauri and Proxima Centauri) in 4.3 years, from 

the most brilliant star (Sirius), in 8.5 years, it traverses the distance 

between the Polar Star and Earth in 400 years, that between the Earth 

and the center of our Galaxy, in 5 × 104 years, it reaches us from the 

closest galaxies in 2.5 × 106 years, from the farthest observed galaxies, in 

6.5 × 109 years, and, finally, from the edges of the known Universe, in 

around 1.9 × 109 years. It is an essential feature of the structure of our 

Universe that the speed of light in a vacuum cannot be matched by any 

other material body, that it cannot be surpassed by any given signal, that 

light travelling through a vacuum is the fastest medium of information 

transmission, and that c constitutes a speed limit, a truly significant 

assertion, raised by Albert Einstein to the rank of postulate of the theory 

of relativity. Another remarkable feature of its subtle nature is the fact 

that light also propagates through void space, that is, through space 

devoid of the usual atomic and molecular matter (unlike sound, for 

example, whose propagation depends on its presence), a phenomenon 

which suggests that this "void" must be the setting of material properties 

and processes of a most refined and profound nature. 

 Whereas the telescope has been used to discover the Universe of 

bodies far away, the microscope has allowed the discovery of the 

Universe of infinitesimal bodies. Robert Hooke (1653 – 1703), mentioned 
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earlier for building the first reflection telescope (1674) and significantly 

improving the quality of lenses, also built the first practically suited 

compound microscope (1675), thus pioneering the field of precise 

microscopic observations. These observations were presented in his 

Micrographia or some physiological descriptions of minute bodies, 

London, 1665, which soon became a milestone work in the history of the 

microscope. Hooke played a key role in instituting the Royal Society of 

London, as a founding member (1663), curator by office for life of the 

Society’s experiments and weekly sessions (1662 – 1703), and one of the 

Society’s secretaries (from 1677 onwards). Among the first elected as 

Fellows of the Royal Societies (F.R.S.) were illustrious names such as 

Huygens (1663); Newton (1672); Flamsteed (1676), the first director of the 

Greenwich Astronomical Observatory (1675); Halley (1678), renowned 

for having calculated the orbit of the eponymous comet, 1682, the author 

of the famous formula (1/p1) + (1/p2) = (n − 1) × [(1/r1) − (1/r2)], and, 

finally, one of Hooke’s famous rivals; Dutch biologist Antony van 

Leeuwenhoek (1632 – 1723), F.R.S. from 1679 onwards, who astounded 

his contemporaries with his discoveries made using the simple 

microscope (Phil. Trans. Roy. Soc., 1673), author of the four-volume 

work Arcana naturae ope microscopiorum detecta (The Secrets of 

Nature Revealed through a Microscope), Leiden, 1722. Using lenses 

fashioned by his own hand with great precision, the smallest of which 

having a diameter of only 0.5 mm, and samples fixed using needles, 

Leeuwenhoek was able to observe biological structures and processes of 

a kind never before seen, achieving detailed resolutions close to the 

theoretical limit of one micron. With the help of such an instrument, he 

was able to study the texture of tooth and bone, striated muscle tissue, 

the fibrous crystalline lens, the circulation of blood through the 

capillaries (thus confirming and elaborating on microscopic 

observations previously made by Italian physician Marcello Malpighi, 

1661), he gave the first exact description of red blood cells, bacteria, and 

protozoa, and was the first to observe the permanent chaotic motion of 

infinitesimal particles suspended in liquids (1673). This Brownian 

motion was confirmed in 1827 by Scottish physicist Robert Brown 

(1773 – 1858), who used a microscope to observe the continuous zig-zag 

motion of pollen granules suspended in a drop of water. The kinetic 

theory of Brownian motion in suspensions, caused by molecular 
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collisions, was advanced by Albert Einstein (1905) and brilliantly 

confirmed through experimental means by Jean Perrin (1908), in his 

classical microscopic study of smoke particles in the air (diameter ≅ 10-4 

cm), following which a useful value for Avogardo’s number was 

determined. 

 From the 17th century onwards, the study of refraction gathered 

great momentum due to the practical and scientific interest for building 

optical instruments. The shapes of lenses and mirrors, the geometrical 

construction of images, an introduction to the study of aberrations: all 

these were the works of such figures as Johannes Kepler (Dioptrice, 

1611), Francesco Bonaventura Cavalieri (Exercitationes geometricae, 

1647), Christiaan Huygens (Dioptrica, 1653), Isaac Newton (Lectiones 

opticae, 1669), Isaac Barrow (Lectiones opticae et geometricae, 1674), 

and Edmund Halley (Phil. Trans. Roy. Soc. , 1693), which were 

systematically ordered in the great optical treatises of the 18th century, 

written by David Gregory (Optics, 1735), Robert Smith (A Compleat 

System of Opticks, four volumes, 1738), Joseph Harris (A Treatise of 

Optics, 1775), and were popularized through the widely accessible 

works of James Ferguson (Astronomy explained upon Sir Isaac 

Newton’s Principles, and made easy for those who have not studied 

Mathematics, 1756; Lectures on Selected Subjects in Mechanics, 

Hydrostatics, Pneumatics and Optics, 1760). Considerable effort was 

undertaken in the years 1655 – 1660 for the perfection of refraction 

telescopes by the brothers Christiaan and Constantin Huygens, and by 

the Italians Eustachio de Divini, Giuseppe Campani, and the great pupil 

of Galilei, Evangelista Torricelli (the first demonstration that a small 

glass sphere, as could be easily obtained in a fire, was the most powerful 

magnifying glass; thus, an explanation was discovered for why plants 

should not be watered under intense sunlight: the spherical droplets of 

water concentrate solar energy in focal points close to the surfaces of 

leaves, which they scorch locally). They fashioned exquisitely cut and 

polished telescope objectives with focal distances of between 30 and 40 

meters, but the iridescence caused by chromatic deviations that had been 

so carefully studied by Newton in his experiments with lenses and 

prisms (Lectiones Opticae, 1669; his dissertation A New Theory about 

Light and Colours, presented during the Royal Society meeting on the 

6th of February 1672; his Opticks treatise of 1704) made obtaining images 
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of satisfactory quality impossible. Newton’s famous "error" regarding 

the essential impossibility of a lens to refract light composed of different 

colors into a single focal point was ultimately solved in 1758 by the 

London-based optical physicist John Dollond (1706 – 1761), who 

introduced the achromatic doublet, obtained by attaching together a 

crown glass convex and a flint glass concave lens. For his remarkable 

achievement in perfecting refraction optical instruments, Dollond 

received an inventor’s patent (his descendants and the Dollond and 

Aitchison company in London are active to this day), and was given the 

honor of being elected F.R.S. (he presented his work, An Account of some 

Experiments concerning the different Refrangibility of Light, before the 

Society in 1758). But, like all discoveries, the invention of the achromatic 

doublet has a context and a history of its own. In this instance, it had 

actually been discovered in 1733 by the optical science amateur and 

professional lawyer Chester Moor Hall (1703 – 1771), who managed to 

practice his art in secret for 25 years, until Dollond happened to learn of 

it during a visit to the shop of lens polisher George Bass. However, the 

discovery found Dollond well prepared, since he had been long 

interested in the issue of achromatic lenses, and had been in 

correspondence with the great mathematician Leonhard Euler, who was 

also preoccupied with the theory of colors and the compensation of 

chromatic aberrations using optical media of opposite dispersion (Nova 

theoria lucis et colorum, Mem. Acad. Berlin, 1746) and with Samuel 

Klingenstierna (1689 – 1785), professor of mathematics and physics at 

Uppsala University, member of the Academy of Sciences in Paris and of 

the Royal Society of London, who was inspired by Euler to discover 

Newton’s error and developed a mathematical theory of the achromatic 

objective (published in 1760). History thus honors Hall with the title of 

inventor, but also Euler and Klingenstierna for their fundamental 

research, and Dollond for introducing this highly consequential 

invention into common use. Achromatic lenses preoccupied Euler for 

many years. He effectively designed and built an eight-lens telescope, 

and calculated the effectiveness of numerous lens combinations 

(Dioptrica, three volumes, Petersburg, 1769 – 1771). Still, the study of 

light dispersion by means of spectral separation with the use of prisms 

that Newton had so elegantly inaugurated in the 1670s was not 

continued until 1800. It was then that William Herschel (Experiments on 
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the Refrangibility of the Invisible Rays of the Sun, Phil. Trans. Roy. Soc. 

1800), discovered, as we have seen, the existence of invisible thermal 

radiation (infrared), which is reflected and refracted according to the 

Snell-Descartes law. Johann Wilhelm Ritter (1776 – 1810) repeated 

Herschel’s experiment, but observed the blackening of silver chloride as 

a detector, and discovered the existence of ultraviolet radiation, by 

observing that the effect of chemical radiation (ultraviolet) is weaker in 

red, but reaches a maximal value just beyond the violet end of the visible 

spectrum (Gilberts Annalen, 7, 525, 1801). It would also be interesting to 

note that the first durable photograph was taken as late as 1826 by Joseph 

Nicéphore Niépce (1765 – 1833), who used a camera obscura with 

convergent lens and a photosensitive plate fashioned from a copper 

alloy, which he exposed for around eight hours; the (negative / positive) 

photographic process familiar today, entailing the capturing of images 

on paper covered with silver chloride fixed with sodium chloride, was 

introduced in 1835 by William Henry Fox Talbot (1880 – 1877). 

 Let us now return to the year 1802, in which William Hyde 

Wollaston (1766 – 1828) made two remarkable observations (whose 

significance was to be understood by Fraunhofer fifteen years later). In 

short, Wollaston repeated the simplest of prism experiments, described 

by Newton as follows: in a very dark room, he placed a glass prism 

before a round aperture in the blinds of a window, about a third of an 

inch in diameter, through which a solar beam might be refracted mainly 

upon the opposite wall of the room, and there form a colored image of 

the Sun (see Isaac Newton, Optica, p. 26, translated into Romanian by 

prof. Victor Marian, Academy Press, Bucharest, 1970). Wollaston’s 

version (A method of examining refractive and dispersive powers by 

prismatic reflection, Phil. Trans. Roy. Soc. II, pp 365-380, 1802) was 

different in that he viewed a narrow slit, strongly illuminated by the 

Sun, directly through the prism, and so observed for the first time dark 

lines cutting across the solar spectrum (the Fraunhofer absorption lines, 

of course). Wollaston then used candlelight as a light source and made 

the first observation of several bright lines against a dark background 

(that is, the atomic emission spectral lines, among which, naturally, the 

unsolved sodium D doublet). Like Newton 130 years before him, 

Wollaston actually found himself in the chamber of a large and 

rudimentary prism spectroscope, but did not realize that this was 
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prelude to the birth of quantum physics (which was close at hand at this 

moment in the millennial history of optics). The final step towards the 

materialization of the idea behind Newton’s famous experiment in the 

form of the modern spectroscope was made by the experimenter of 

genius Joseph von Fraunhofer (1787 – 1826). Forced from an early age to 

earn a living off fine optics and mechanics, he was at the time studying 

telescope lens achromatization, after having attempted to achromatize 

combinations of prisms fashioned from theretofore tested types of 

glasses. In order to obtain precise measurements of the refrangibility of 

variously colored light beams, he used the now familiar optical system 

comprising a parallel beam of light limited by a narrow slit, incident on 

a glass prism fixed in a position of minimal deviation, which he observed 

through a telescope. It was using this remarkable instrument that 

Fraunhofer discovered (Bestimmung des Brechungs und Farbzerstreungs 

Vermögens verschiedener Glassorten in Bezug auf die Verrolkommung 

achromatischer Fernröhre, Denkschr. der Münch. Akad. d. Wiss, 5, 193, 

1817) that the continuous spectrum of sunlight is cut across (graduated 

sui generis) by endless, fine, more or less dark spectral lines, an ideal 

marker for positioning colors in the spectrum, which allowed a rigorous 

description of the dispersion of optical media (for example, see the table 

in section 2.7, Chromatic Aberrations), and the selection of the most 

appropriate types of glasses of building achromatic optical systems. 

These lines have since been termed Fraunhofer lines, of which the most 

intense (the darkest within the Sun’s spectrum) are marked using letters 

of the Latin alphabet. Now that the dispersion and refraction indices of 

various types of glasses were precisely known, it was finally possible to 

construct the great refraction telescopes. Fraunhofer’s second 

monumental achievement was the invention of the diffraction grating* 

(Neue Modifikation des Lichtes durch gegenseitige Einwirkung und 

Beugung der Strahlen und Gesetze derselben, Denkschrift der K. 

Akademie zu München, 8, 1, 1821-22), a much more dispersive element 

that the optical prism, which also allowed the precise description of 

                                                           
* In truth, the diffraction of light into multiple spectral orders by the use of a matrix of parallel wires 
had been observed as early as 1785, by American astronomer David Rittenhouse, but his simple 
observations as such did not stir interest and were quickly forgotten. It was Thomas Young who 
through his famous experiments of 1801 – 1803 (see Lectures on Natural Philosophy, London, 1807) 
finally demonstrated the interference of light waves originating from coherent sources and elaborated 
the process through which the wavelengths for different colors might be determined. 
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colors and spectral lines using wavelengths (the Fraunhofer theory 

regarding diffraction through optical gratings was finalized in 1835 by 

Friedrich Magnus Schwerd in his comprehensive work Die 

Beugungserscheinungen aus den Fundamentalgesetzen der 

Undulationstheorie analytisch entwickelt). 

 In his first experiments, he used gratings of thin parallel metal 

wires taught at equal intervals by use of two parallel screws, the grating 

period being equal to the lead of the screw (gratings of around ten wires 

per millimeter). Dissatisfied, Fraunhofer then fashioned much denser 

gratings, of up to 300 lines per millimeter, by tracing equidistant lines on 

a glass surface, using a dividing engine with a diamond cutting tool (a 

process which is still used today). With the help of this grating, he 

extended his measurements to the dark line spectrum of direct sunlight, 

or of sunlight reflected by the Moon or Venus, thus observing up to 576 

of these "Fraunhofer lines", as well as to the bright line spectrum of 

terrestrial light sources (fire, sparks and electric arcs). Of particular 

importance was his observation of the fact that the dark D line of the 

Sun’s spectrum coincides with the bright yellow line of sodium. And so, 

during the short life he was given (he died at no more than 39 years old), 

Fraunhofer introduced the fundamental instruments of modern optical 

spectroscopy. As homage paid to the man who designed the first high 

precision achromatic refraction telescope and proved that the spectral 

lines originating from astral elements are the same as those of terrestrial 

source, his grave in München bears the epitaph "Approximavit Sidera", 

"He brought the stars closer to us". 

 An important contribution to fashioning achromatic objectives of 

large diameters (and, consequently, of high resolving power, see 

equation (249)) was the perfection of the manufacturing process of 

crown and flint glass by the Swiss optician Pierre Louis Guinand 

(1748 – 1824), who used an agitator to ensure the elimination of gas 

bubbles and tensions, and the homogenization of optical glass paste 

during cooling. Guinand’s glass had the following compositions: crown 

glass, weakly dispersive (72% SiO2, 18% K2CO3, and 10% CaO), flint 

glass, strongly dispersive and refractive (45% SiO2, 12% K2CO3, and 43% 

PbO) and was much purer, more transparent and more homogenous (no 

striae) than before. Its production was soon monopolized by the large 

companies Feil in Paris and Chance in Birmingham. This was the glass 
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used to build the great refraction telescopes, from with the famous 

telescope with an objective 24 cm in diameter, built by Fraunhofer (first 

Guinand’s apprentice, then his associate) and installed in Tartu, Estonia, 

in 1824, at the request of astronomer Friedrich Georg Wilhelm von 

Struve, to the refraction telescopes with huge objectives, designed by the 

American optician Alvan Clark (1804 – 1887) and installed in the great 

astronomical observatories, among which the one in Pulkovo, Russia 

(D = 75cm, in 1885), one in Lick, U.S.A. (D = 91cm, in 1888), and one in 

Yerkes, U.S.A. (D = 102cm, in 1897). The production of high quality 

optical glass generally gave great impetus to instrumental optics (the 

telescope, the photographic objective, the spectral instruments). 

 Let us first follow the progress of spectroscopy, whose 

experimental foundation was laid by Fraunhofer, as we have seen. The 

prism spectroscope was subsequently perfected by Meyerstein (1856, 

1861), Amici (1860) introduced the system of direct vision prisms 

(entailing the alternative attachment of a flint prism between two crown 

prisms, or of two flint prisms between three crown prisms, so that the 

median wavelength of the visible spectrum appears undeviated), 

Geissler (1856) invented the low pressure gas discharge tubes, thus 

supplying a new light source for emission spectroscopy. Spectroscopy is 

soon to become the finest and most precise method of investigating the 

intimate processes of light emission and absorption that take place in 

atomic and molecular systems, triggering a new revolution in the study 

of the Universe and of the structure of matter. Thus, to cite only some of 

the plethora of illustrious names, the great theoretician Gustav Robert 

Kirchhoff (1824 – 1887) and the astute experimenter Robert Wilhelm 

Bunsen (1811 – 1899), in the scientific environment of university town 

Heidelberg, lay the foundations of spectral analysis, an ultrasensitive 

method of determining the chemical composition of terrestrial and 

cosmic substances (Chemische Analyse durch Spektralbeobachtungen, 

Poggendorff Annalen, 1860; Untersuchungen über das Sonnenspektrum 

und Spektren der chemischen Elemente, Abhandl, Berlin, Akad., 

1861 – 1863). Of special notice is the activity of Kirchhoff, who created a 

mathematical basis to the scalar theory of light diffraction, explained the 

Fraunhofer lines as absorption lines in the cooler gases of the solar 

atmosphere, and advanced his famous law according to which the ratio 

between emission power and absorption power of bodies is a universal 
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function of frequency and temperature. In Sweden, Anders Jonas 

Ångström (1814 – 1874), a classical figure associated with high precision 

spectroscopy measurements (the unit of length 1Å = 10-10m bears his 

name), determined the absolute wavelength of 1,000 Fraunhofer lies in 

the Sun’s spectrum (Recherches sur le spectre normal du Soleil, Uppsala, 

1868). Henry Augustus Rowland (1848 – 1901) invented the concave 

grating and perfected the technique of tracing high power diffraction 

optical gratings of up to 1,700 lines per millimeter, thus opening the way 

for high resolution spectroscopy of frequencies from infrared to visible, 

to vacuum ultraviolet (Manufacture and Theory of Gratings for Optical 

Purposes, Phil. Mag., 13, 469, 1882; Table of the Solar Spectrum 

Wavelengths, Astrophys. Jour., 1-6, 1895 – 1898). Johann Jakob Balmer 

(1825 – 1898) formulated the renowned law of wavelengths pertaining 

to the lines of the visible spectrum of hydrogen (Notiz über die 

Spectrallinien des Wasserstoffs, Wied. Ann., 25, 80, 1885). Johannes 

Robert Rydberg (1854 – 1919) discovered the general law of the 

frequencies of lines pertaining to the spectral series of hydrogen, namely 

𝑣 = 𝑅[(1 𝑚2⁄ ) − (1 𝑛2⁄ )], in which appears the universal constant 𝑅 =

3.2869×1015 𝑠𝑒𝑐−1, that bears his name (Recherches sur la constitution 

des spectres d'emission des éléments chimiques, Kongl. Svenska 

Vetensk. Akad. Handling, 23, 155, 1890). The next step was taken by 

Walter Ritz (1878 – 1909), with the combination principle, according to 

which any spectral line’s frequency may the expressed as 𝜈 = 𝑇𝑚 − 𝑇𝑛, 

where the system of numbers 𝑇𝑖 , named spectral terms, defines the 

atomic system considered. The significance of this principle was 

understood by Niels Henrik David Bohr (1885 – 1962), who identified 

the numerical system 𝑇𝑖 with the system of possible energy levels 𝐸𝑖 of 

atomic electrons, with Planck’s h constant as proportionality constant, 

namely ℎ𝜈 = 𝐸𝑛 − 𝐸𝑚, based on which he lay the foundation of the study 

of the quantum structure of atoms and of their interaction with light 

(Phil. Mag. 26, 1, 476, 857 (1913); The Theory of Spectra and Atomic 

Constitution, Cambridge, 1922; On the Application of the Quantum 

Theory to Atomic Structure, Cambridge, 1924). Albert Einstein 

(1879 – 1955) penetrated even deeper into the subtle mechanism of the 

interaction between light and atomic systems, in his fundamental work 

regarding the process of stimulated emission, which, together with the 

processes of spontaneous emission and absorption allowed the 
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surprisingly simple and general deduction of the law of distribution of 

radiant energy from the spectrum of dark bodies (Zur Quantentheorie 

der Strahlung, Physicalische Zeitschrift, 18, 121, 1917). Whole decades 

would pass before Einstein’s ideas would be put to use in the quantum 

apparatuses so widespread today, that amplify light through the 

stimulated emission of radiation. As is known, the first laser ray sprung 

from a ruby crystal as late as June of 1960, in the laboratory headed by 

Theodore H. Maiman (born 1927) at Hughes Aircraft Co. in Malibu, 

California, thus bringing on the dawn of a new era in the millennial 

history of optics (for a detailed historical presentation, see Mario 

Bertolotti, Masers and Lasers - An Historical Approach, Adam Hilger 

Ltd. Bristol, 1983). In fact, a whole volume could be dedicated to the 

quantum optics revolution triggered in 1900 by Max Karl Ernst Ludwig 

Planck (1858 – 1947), upon his introduction of the concept of light 

quantum and his establishing the law of thermal radiation (Über 

irreversible Strahlungsvorgänge, Ann. Physik, 1, 69, 1900). 

 Let us go back to the moment in the history of geometrical optics 

marked by Irish mathematician, astronomer, and physicist Sir William 

Rowan Hamilton (1805 – 1865), with his series of works entitled Theory 

of Systems of Rays, published in Transactions of the Royal Irish 

Academy (15, 69-174, 1828; 16, 1-61, 1830; 16, 93-125, 1831; 17, 1-144, 

1837), in which he introduced his famous characteristic functions V, W, 

T of optical systems, based on Fermat’s principle and variational 

calculus. Thus, for example, the six variable function V, known today as 

the point eikonal, is defined as the optical path 

𝑉(𝑥, 𝑦, 𝑧; 𝑥′, 𝑦′, 𝑧′) = ∫ 𝑛𝑑𝑠

𝑃′

𝑃

, 

 

between the point 𝑃(𝑥, 𝑦, 𝑧)  in object space and 𝑃′(𝑥′, 𝑦′, 𝑧′)  in image 

space, which satisfies the eikonal equations 

 

(
𝜕𝑉

𝜕𝑥
)

2

+ (
𝜕𝑉

𝜕𝑦
)

2

+ (
𝜕𝑉

𝜕𝑧
)

2

= 𝑛2(𝑥, 𝑦, 𝑧), 

 

(
𝜕𝑉

𝜕𝑥′
)

2

+ (
𝜕𝑉

𝜕𝑦′
)

2

+ (
𝜕𝑉

𝜕𝑧′
)

2

= 𝑛′2(𝑥′, 𝑦′, 𝑧′), 

 

1828 

1917 

1960 

1900 



 

Ioan Ioviţ Popescu 
Optics 

I. Geometrical Optics 

187 

 

where the partial derivatives represent the direction of the light beam in 

the point considered. Since the properties of optical systems can be 

described relative to the points and/or rays (direction cosines) in object 

and image spaces, Hamilton also introduced the "auxiliary" 

characteristic functions W and T, which modern terminology calls the 

mixed eikonal and the angular eikonal, respectively. Any of Hamilton’s 

characteristic functions describe the optical system, and their usage 

offers specific advantages in various applications, as he himself 

demonstrated in the case of lens, mirrors, and revolving systems in 

general, in propagation through anisotropic media and the atmosphere. 

 The formalism devised by Hamilton for the light beams of 

geometrical optics was extended to the study of particle trajectory in 

classical mechanics, in a short work entitled On the Application to 

Dynamics of a General Mathematical Method Previously Applied to 

Optics, published in the British Association Report (1834), and in the 

definitive article On a General Method in Dynamics: by which the Study 

of the Motions of All Free Systems of Attracting or Repelling Points is 

Reduced to the Search and Differentiation of One Central Relation or 

Characteristic Function, this time published in the most prestigious and 

well circulating journal (Phil. Trans. of the Royal Society, 1834). 

 The general and quite fertile mathematical method of 

characteristic functions, introduced by Hamilton in geometrical optics 

and in mechanics, constituted one of the most profound discoveries of 

the 19th century. But, whereas the Hamiltonian formalism in mechanics 

quickly became well known, thanks to the works of Karl Gustav Jacob 

Jacobi (1804-1851), Hamilton’s great writings on geometrical optics was 

forgotten for decades (except by Maxwell (On the Application of 

Hamilton's Characteristic Function), Proc. London Math. Soc., 6, 117, 

1875) and Thiesen (Ann. d. Physik, 45, 821, 1892)). The concept of 

characteristic function known as the eikonal was rediscovered and 

circulated once again by H. Bruns (Das Eikonal, K. sächs. Ges. d. wiss. 

Abhand. math. - phys. Kl., 21, 323-436, 1895), who wrote his work, 

extraordinarily, completely unaware of the existence of the work on 

optics written by his great precursor, as can be deduced from the 

sentence of page 329: "Eine ganz ähnliche Rolle, wie der Hamilton'sache 

Ansatz in der Mechanik, spielt nun der Eikonalbegriff auf dem 

allerdings weit engeren Gebiete der geometrischen Optik". Here we 
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have an amusing example of how science sometimes progresses in the 

dark. In fact, Bruns followed the path backwards, that is, from Hamilton 

and Jacobi’s mechanics to geometrical optics, but starting from Malus’s 

theorem (1808), and not from Fermat’s more general principle (also 

applicable in anisotropic media). At any rate, Bruns obtained eikonal 

functions that were apparently simpler (having only four variables), but 

which actually described only particular instances of the Hamiltonian 

characteristic functions, with the light beam congruencies intersecting a 

pair of reference planes (𝑧 = 0, 𝑧′ = 0). For this reason, a hundred years 

after the creation of Hamiltonian formalism in optics (1824 – 1844), the 

relative importance of Hamilton’s and Bruns’s contributions was still the 

object of a fierce debate between John Lighton Synge (Hamilton's 

Method in Geometrical Optics, J. Opt. Soc. Amer., 27, 75, 1937; 

Hamilton's Characteristic Function and Bruns'Eikonal, J. Opt. Soc. 

Amer., 27, 138, 1937) and Maximillian Jakob Herzberger (On the 

Characteristic Function of Hamilton, the Eikonal of Bruns and Their 

Use in Optics, J. Opt. Soc. Amer., 26, 177, 1936; Hamilton's 

Characteristic Function and Bruns Eikonal, J. Opt. Soc. Amer., 27, 133, 

1937), which ended in favor of the former, but with the shorter term of 

eikonal retained. At the same time, Hamilton’s compatriots, A. W. 

Conway and J. L. Synge, edited two volumes of his published work and 

manuscripts, under the titles The Mathematical Papers of Sir William 

Rowan Hamilton, vol. I: Geometrical Optics (1931) and Vol. II: 

Dynamics (1940), published by Cambridge University Press. In fact, the 

task of implementing and elaborating the ideas of Hamiltonian optics 

belonged almost exclusively to the 20th century, through such works as 

those as T. Smith (Trans. Opt. Soc., London, 23, 1921-1933), G. C. 

Steward (The Symmetrical Optical System, Cambridge, 1928), J. L. Synge 

(Geometrical Optics, An Introduction to Hamilton's Method, 

Cambridge, 1937, 1962), R. K. Luneburg (Mathematical Theory of 

Optics, Berkeley, 1964), M. J. Herzberger (Modern Geometrical Optics, 

Interscience, 1968), H. A. Buchdahl (An Introduction to Hamiltonian 

Optics, Cambridge, 1970), O. N. Stavroudis (The Optics of Rays, 

Wavefronts and Caustics , Academic Press, 1972), T. Sekiguchi and K. B. 

Wolf (The Hamiltonian Formulation of Optics, Am. J. Phys., 55, 830, 

1987), among others. 

 Generally, any system whose evolution is governed by 



 

Ioan Ioviţ Popescu 
Optics 

I. Geometrical Optics 

189 

 

Hamilton’s equations (see section 1.2, equation (64)) has numerous 

remarkable properties, such as Liouville’s theorem, according to which 

the volume elements in phase space are conserved. Let us consider the 

simple example of the one-dimensional optical problem, with beam 

trajectory 𝑥(𝑧) and direction of propagation 𝑝𝑥(𝑧), so that the volume 

element in phase space becomes the area element 𝑑𝑥. 𝑑𝑝𝑥 . This 

elementary area represents a narrow set of light beams that travel 

between points 𝑥 and 𝑥 + 𝑑𝑥, with a direction of propagation between 

𝑝𝑥 and 𝑝𝑥 + 𝑑𝑝𝑥. According to Liouville’s theorem, this area is conserved 

along the trajectory, so that, by considering any two points 𝑃1(𝑧1) and 

𝑃2(𝑧2), we get 𝑑𝑥1. 𝑑𝑝𝑥1
= 𝑑𝑥2. 𝑑𝑝𝑥2

, as can be seen in Fig. A.5. Using an 

optical system, we can, for example, obtain a smaller breadth 𝑑𝑥2, but 

with a larger spread of beam directions 𝑑𝑝𝑥2
, and conversely. This 

fundamental property of the phase space is a direct consequence of 

Liouville’s theorem, and constitutes the essence of uncertainty relations 

in wave optics and quantum mechanics. Hamiltonian formalism paved 

the way for a general analogy between optics and mechanics, and served 

as a powerful tool for a dual description of natural phenomena, through 

trajectories and associated waves. As we know, the relevance of his work 

today is linked to the formulation of quantum mechanics theory and the 

representation of motion at microscopic levels. 

 The last decades have been marked by a series of new theoretical 

results based on which the classical field of geometrical optics has been 

considerably extended. Thus, J. Keller and his associates (Appl. Phys. 

Letters, 28, 426, 1957; J. Opt. Soc. Amer., 52, 2, 1962) have developed a 

geometrical theory of diffraction, starting from a generalization of 

Descartes’ invariant. The results obtained constitute a marked progress 

from Kirchhoff’s theory (1883), whose applicability is limited to 
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distances larger than the aperture area through which light diffracts (≫

𝜆). Starting off from a different direction, K. Miyamato and E. Wolf (J. 

Opt. Soc. Amer., 52, 615, 626, 1962) have elaborated on the ideas of B. B. 

Baker and E. T. Copson (The Mathematical Theory of Huygens' 

Principle, Oxford, 1939), and A. Rubinowicz (Die Beugungswelle in der 

Kirchhoffschen Theorie der Beugung, Warsaw, 1957), and have reached 

the conclusion that Kirchhoff’s integral on the aperture area can be 

reformulated as a line integral on its outline. Thus, the initial explanation 

given by Thomas Young of the diffraction shapes is restored (he believed 

they represent the interference between the primary ray of incidence and 

the secondary waves generated by the aperture edges. M. Kline and I. 

W. Kay (Electromagnetic Theory and Geometrical Optics, Interscience, 

1965) have carried on R. K. Luneburg’s work (Mathematical Theory of 

Optics, Berkeley, 1964), and have elaborated approximate methods that 

link the electromagnetic theory of light to geometrical optics and 

diffraction theory. Throughout the current volume, for the sake of 

simplicity, we have chosen to begin from the scalar equation of harmonic 

waves, for the deduction of the eikonal equation, as demonstrated by 

Arnold Sommerfeld and Iris Runge (Anwendung der Vektor-rechnung 

auf die Grundlagen der Geometrischen Optik, Ann. d. Physik, 35, 277, 

1911), as well as for the development of Gustav Robert Kirchhoff’s scalar 

theory of diffraction (Zur Theorie der Lichtstrahlen, Ann. d. Physik, 18, 

663, 1883). More recently, P. Hillion (J. Optics, 10, 11, 1979), has 

developed a theory which allows the description of polarized optical 

fields, by linearizing the eikonal equation. Another path of enquiry has 

been explored by D. Gloge and D. Marcuse (J. Opt. Soc. Amer., 59, 1629, 

1969), who have started off from Fermat’s principle and have achieved 

a quantification of light rays, by demonstrating that Gaussian beams are 

linked to wave packets of minimal spread. These ideas have been amply 

elaborated through the application of Lie groups and algebras in optics 

(Lie Methods in Optics, editors J. Sánchez-Mondragón and K. B. Wolf, 

in Lecture Notes in Physics, vol. 250, Springer, 1986), methods which 

have been also successfully used in quantum mechanics. Hamiltonian 

formalism thus proves capable of describing geometrical, wave-related 

and quantum properties, having deep roots in the simplectic geometry 

of phase space (J. Sniatycki, Geometric Quantization and Quantum 

Mechanics, Springer, 1980; V. Guillemin and S. Sternberg, Symplectic 
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Techniques in Physics, Cambridge, 1984). Finally, we note the recent 

successes in applying Lie groups to the study of higher order geometric 

aberrations. 

 While Hamilton was reviving the foundation of theoretical optics 

itself, and modelling geometrical optics and classical mechanics within 

the framework that one hundred years later would be taken up by 

quantum mechanics, considerable progress was being made in the field 

of instrumental and experimental optics. So it was that L. Schleiermacher 

initiated the theory of vignetting and proposed the method of least 

squares in optimizing the parameters of optical systems (Über den 

Gebrauch der analytischen Optik, Poggendorff Annalen, 14, 1828; 

Analytische Optik, Darmstadt, 1842). The great mathematicians Cauchy 

and Gauss continued Euler’s work in the field of optics, who, as we have 

shown, strived for many years to compensate color dispersion through 

combinations of lenses. Thus, Augustin Louis Cauchy (1789-1857) 

succeeded in giving a first good approximation of formula for dispersion 

in transparent media, in Mémoire sur la dispersion de la lumière, 1836 

(also refer to section 2.7, equation (262)), and introduced complex 

refraction indices to explain metallic reflection. Karl Friedrich Gauss 

(1777-1855) undertook systematic research regarding the properties of 

centered optical systems of paraxial rays, and introduced the concepts 

of conjugate and principal planes, which considerably facilitated the 

study of complex instruments (Dioptrische Unterschungen, 1843). 

Giovani Battista Amici (1786-1863) used the aplanatic property of 

Wierstrass points in the construction of objectives for microscopes of 

high numerical aperture (Ann. de chim. et phys., 12, 117, 1844), and 

introduced the method of immersion (also see section 2.1, Fig. 24). James 

Clark Maxwell (1831-1879) contributed to geometrical optics with the 

classical example of a perfect optical instrument with fisheye 

distribution – see section 3.3 (Cambridge and Dublin Mathematical 

Journal, 8, 188, 1854; Quart. Journ. of Pure and Applied Mathematics, 2, 

233, 1858; for interesting generalizations, including Luneburg lenses, see 

R. Stettler, Optik, 12, 529, 1955). Maxwell’s profound work is only 

comparable to that of Newton and Einstein. As we know, it is to the 

genius of this great Scottish physicist that we owe electromagnetic 

theory and the equations that bear his name (A Dynamical Theory of the 

Electromagnetic Field, Phil. Trans. Roy. Soc. London, 155, 459, 1865; A 
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Treatise on Electricity and Magnetism, Oxford, 1873), the first great 

unification of electrical, magnetic, and optical phenomena, one of the 

greatest intellectual triumphs of all time. Let us here give an 

interpretation of the famous equation  

𝑐 = 1 √𝜀0𝜇0⁄  

in Maxwell’s own words: "The velocity of the transverse undulations in 

our hypothetical medium, calculated from the electromagnetic 

experiments of M. M. Kohlrausch and Weber (n.n. 1856), agree so exactly 

with the velocity of light calculated from the optical experiments of M. 

Fizeau (n.n. 1849), that we can scarcely avoid the inference that light 

consists in the transverse undulations of the same medium which is the 

cause of electric and magnetic phenomena", and further, " ... we have 

strong reason to conclude that light itself is an electromagnetic 

disturbance in the form of waves propagated through the 

electromagnetic field according to electromagnetic laws". Soon 

afterwards (1888), Maxwell’s work was crowned by the discovery of 

radio waves (which propagate at the same speed, and is reflected, 

refracted, interferes, diffracts, and is polarized just like ordinary light) 

by Heinrich Rudolf Hertz (1857-1894), who thus confirmed that light and 

electromagnetic waves share the same nature. 

 Whereas Fraunhofer opened the way for the precise correction of 

chromatic aberrations and the fashioning of modern refraction telescope 

objectives as early as 1817, solving the problem of geometric aberrations 

would await the arrival on the scene of Seidel and Petzval in the years 

1856-1857. Meanwhile, as we have seen, Gauss (1843) gave an elegant 

shape to the first order theory, in which Descartes’ invariant 𝑛× sin 𝜃 is 

simply written as 𝑛×𝜃, a notation which implies a narrow bunch of light 

rays around the optical axis ( 𝜃 ≤ 0.1 𝑟𝑎𝑑𝑖𝑎𝑛𝑠 ≅ 6° ). Under the spur 

brought on by the invention and perfection of photographic apparatuses 

and techniques (Niépce, 1826; Talbot, 1835; Daguerre, 1839; E. Becquerel 

and Draper, 1842; Foucault and Fizeau, 1845; Bond, 1850; De la Rue, 

1860; Cros and Ducos du Haro, 1868; Eastmann, 1888; Lippmann, 1893; 

and many others) there emerged the new task of designing large 

aperture and field of view objectives, and, consequently, of extending 

optical system theory outside the paraxial domain. Obviously, we would 

get a better approximation if we retain the first two terms of the 

expansion sin 𝜃 = 𝜃 − (1 3⁄ !)𝜃3 + (1 5⁄ !)𝜃5 − (1 7⁄ !)𝜃7 + ⋯ , that is, if 

1888 
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we work in the framework of a third order theory. The deviation from 

the first order theory that occurs in this case will lead (see section 2.8) to 

the five primary aberrations (spherical, coma, astigmatism, field 

curvature, and distortion), also named Seidel aberrations, after Ludwig 

von Seidel (1821-1896), who first studied them in a systematic fashion 

(Zur Dioptrik, über die Entwicklung der Gliedern 3-ter Ordnung, Astron. 

Nachr., 43, 289, 305, 321, 1856). Seidel’s analysis was subsequently 

simplified by various authors (for example, in the present work we have 

favored the method given in the unpublished notes of Edward L. 

O'Neill) and was extended, through various techniques, to the study of 

higher order geometric aberrations. As we have seen, the simple 

converging lens had long been used in the camera obscura (see della 

Porta, 1589), as well as in taking the first photograph (Niépce, 1826), but 

the first daguerreotypes were already being taken using achromatic 

doublets (Chevalier, 1830). But very long exposure times were used with 

small aperture diaphragms, to minimize geometric aberrations. Unlike 

regular telescopes, field curvature and distortion especially were no 

longer tolerated in the case of a good photographic objective. The first 

great theoretical and practical success was obtained by Josef Max 

Petzval (1807-1891), who studied the field curvature aberration in detail, 

deduced the requirements for image flattening (see section 2.8, equation 

(320)), and, based on previous calculations, created the fast photographic 

objective for portraits (Bericht über die Ergebnisse einiger dioptrischer 

Untersuchungen, Pesth, 1843; Bericht über optische Untersuchungen, 

Ber. Keis. Akad. Wien, Math. - Naturwiss. Kl. 24, 50, 92, 129, (1857)). 

Petzval’s "flattened" objective, composed of two separate doublets, 

enabling high luminosity, but a small field of view, was perfected by 

Steinheil (1860) and Dallmeyer (1866), who, by making the separate 

doublets symmetrical, managed to also eliminate the distortion 

aberration, greatly enlarging the field of view at the same time. 

 Another remarkable achievement of this period was the 

discovery of the "schlieren" or "knife-edge" method (see Chapter III) by 

L. Foucault (Mémoire sur la construction des télescopes en verre argent 

é, Ann. de l'Observatoire Imp. de Paris, 5, 197, 1859) and, independently, 

by A. Töpler (Beobachtungen nach einer neuen optischen Methode, Bonn, 

1864; Pogg. Ann. Physik u. Chem., 127, 556, 1866). 

 Before moving on to the "Abbe moment", let us note several more 
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advancements in the history of 19th century optics. Renowned 

astronomer Sir George Biddell Airy (1801-1892) was probably the first to 

correct astigmatism, by using a sphero-cylindrical lens to correct his own 

myopic astigmatism (1825). Widespread application of this method in 

ophthalmological practice would occur after 1862, the year in which 

Franciscus Cornelius Donders (1818-1889) published his treatise 

regarding cylindrical lens and astigmatism. Airy studied the formation 

of images through telescopes and the precision of astronomical 

observations in depth. Among his more than 500 published works, of 

special importance for determining the limit of applicability of 

geometrical optics and the resolution capabilities of optical instruments 

was the paper in which he calculated Fraunhofer diffraction through a 

circular aperture (On the Diffraction of an Object Glass with Circular 

Aperture, Trans. Cambridge Phil. Soc., 5, 283, 1835). The maximal center, 

in which 83.9% of diffracted energy is concentrated, is a bright circular 

spot (the Airy disk) of angular radius 𝛾, given by the famous formula 

 

sin 𝛾 = 1.22
𝜆

𝐷
. 

 

To him are also attributed the wave theory of the rainbow (see F. Uliu, 

Istoria curcubeului - De la Noe la Mie, EMIA and UNIVERSITARIA 

Press, Deva-Craiova, 2005), as well as the Airy function in multiple beam 

interference theory. 

 Lord Rayleigh, John William Strutt (1842-1919) was the first to 

introduce a practical and simple criterion (𝛾𝑚𝑖𝑛 = 1.22 𝜆 𝐷⁄ , see formula 

(249)) for describing the resolving power of optical instruments for 

incoherent light sources (Investigations in Optics with special reference 

to Spectroscope, Phil. Mag., 8, 261, 1879). Finally, we note the two simple 

criteria of stigmatism (see Chapter I, section 1.3, equation (98) and 

equations (102) and (112), respectively), namely the axial stigmatism 

condition, deduced by Sir William Herschel (Phil. Trans. Roy. Soc., 111, 

226, 1821) and the transversal stigmatism condition, deduced first in 

relation to thermodynamics by one of the founders of that field, Rudolf 

Julius Emanuel Clausius (Pogg. Ann., 121, 1, 1864) and subsequently by 

renowned physiologist and physicist Hermann Ludwig Ferdinand von 

Helmholtz (Pogg. Ann. Jubelband, 557, 1874). However, the importance 
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of the latter condition in designing optical systems was signaled after its 

rediscovery by Ernst Karl Abbe (Jenaische Ges. Med. u. Naturwiss., 129, 

1879). 

 The last third of the 19th century was dominated by the figure of 

optical physicist Ernst Karl Abbe (1840-1905), professor at the University 

of Jena, who, in close collaboration with microscope builder Carl Zeiss 

(1816-1888) and chemist Otto Schott (1851-1935), specialized in optical 

glass, lay the theoretical, technical and technological foundations of 

modern optical microscopy (see Ernst Abbe: Beiträge zur Theorie des 

Mikroskops under mikroskopischen Wahrnehmung, Arch. f. mikr. Anat., 

9, 413, 1873; Die optischen Hilfsmittel der Mikroskopie, Braunschweig, 

1878; Gesammelte Abhandlungen, Gustav Fisher, Jena, 3 volumes, 1904 

– 1906. A general exposition of Abbe’s theory of optical instruments was 

published by his collaborator, S. Czapski, Theorie der optischen 

Instrumente, 1893; also see S. Czapski, O. Eppenstein, Grundzüge der 

Theorie der Optischen Instrumente nach Abbe, J. A. Barth, Leipzig, 1924). 

To illustrate the impact of these achievements, let us remember that 

microbiological and bacteriological research would have been 

impossible without microscopes with a resolving power close to the 

theoretical limit of diffraction. Like Fraunhofer in his time, Abbe was a 

unique combination of scientific genius, designer and inventor, who 

thus brilliantly demonstrated the fertile interaction between pure and 

applied science. However, unlike telescope and photographic objectives, 

production of performance microscopes had a late start, because of 

difficulties encountered in polishing such small lenses within the 

margins of acceptability, in significantly improving optical glass for 

achromatization, and in understanding the diffractive phenomena 

inherent to the observation of microbodies using correctly calculated 

systems involving such lenses. The history of the Abbe-Zeiss-Schott 

moment may be summarized with reference to the following events: 

1846, Carl Zeiss is mechanic and lecturer at the University of Jena, and, 

following the suggestion of biologist J. Schleiden (1804 – 1881), begins 

building microscopes. 

1861, Carl Zeiss receives the gold medal at the Industrial Exposition of 

Thuringia, for his high-quality microscopes, built, however, after the 

traditionally empirical fashion of trial and error. 

1866, Carl Zeiss and the twenty employees of his small workshop in Jena 1866 
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had produced around one thousand such microscopes, in the context of 

fierce competition from the company Hartnack in Paris, where water 

immersion objectives had been built since 1859. Zeiss begins 

collaboration with Abbe, who was then lecturer at the University of Jena, 

with the intent of building microscopes on a scientific basis. Initially, 

Abbe concentrated his efforts on introducing numerous measuring and 

control instruments in Zeiss’s shop, particularly: 

1867, Abbe’s focometer, for measuring the focal distances of the objective 

and component lenses; 

1869, Abbe’s refractometer, published in Jenaische Ges. Med. u. 

Naturwiss, 8, 96, 1874, for determining the refractive indices of glass and 

liquid samples following measurements of the total reflection critical 

angle; the same year saw the introduction of the Abbe condenser, for 

illuminating samples with any angular aperture 𝛾1  in the maximal 

possible interval (±90°); 

1870, Abbe’s light meter, for determining the numerical aperture 𝐴𝑁 =

𝑛1 sin 𝛾1 of microscope objectives, where 𝑛1is the refractive index of the 

immersion medium (air, water, oil, etc.) placed between the object and 

the frontal lens of the objective, and 𝛾1 is the angle between the marginal 

ray and the optical axis. The concept of numerical aperture was 

introduced by Abbe because, after numerous experiments, he found that 

this factor controls the brightness of the image and the resolving power 

of microscope objectives (close conjugate planes), unlike the number =

𝑓 𝐷⁄ , which is the relevant factor when objects are far apart (telescope, 

photographic objective). Abbe demonstrated, first experimentally, then 

based on diffraction theory, that the minimal distance (𝛿𝑟1)𝑚𝑖𝑛 between 

two points on the object that can still be resolved in the image (that is, 

the inverse of the spatial resolution) is proportional to 𝜆0, and inversely 

proportional to 𝐴𝑁  (see section 2.1, equation (123)). The immediate 

consequence of this research would be that, beginning with 1872, the 

Zeiss company would become famous for the performance of its 

microscopes, the first based on a correct theory and mathematical 

calculations. Abbe becomes Zeiss’s partner (1875). 

1871, Abbe publishes his studies concerning the intensity of light in 

optical instruments, in which he elaborates theoretical knowledge of 

diaphragms and the human pupil (Jenaische Ges. Med. u. Naturwiss., 6, 

263, 1871). This research would later be further elaborated by M. von 
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Rohr (Zentr. Ztg. Opt. u. Mech., 41, 145, 159, 171 (1920)). 

1873, he publishes his fundamental work "Contributions to the Theory 

of the Microscope and of Microscopic Perception", in which he lays the 

theoretical foundations concerning diffraction and the formation of 

images. Such a theory became necessary in the case of observing 

microbodies at a level of detail of the order of wavelengths, in which the 

effect of diffracted light can no longer be neglected. In order to illustrate 

Abbe’s theory, let us consider such an object the size of a circular 

aperture 𝑃1𝑃2 , illuminated by a plane wave normally incident on the 

object plane (see Fig. A.6). The waves diffracted by the object are first 

focalized by the objective system on its rear focal plane, where it forms 

the corresponding Fraunhofer diffraction pattern, with the (spectral) 

maxima of various orders in 𝑆0 , 𝑆±1 , 𝑆±2 , etc., and then further 

propagate, interfere, and finally form the inverted object image on the 

image plane of the objective. It becomes evident that the image obtained 

is proportionately clearer to the value of the angular aperture 𝛾1  (or, 

more generally, the numerical aperture 𝐴𝑁 = 𝑛1 sin 𝛾1) of the objective. 

The higher the angular aperture, the more spectra (spatial frequencies) 

contribute to the image’s formation. This is how Abbe explained his 

famous formula for the theoretical limit of spatial resolution 

 

(𝛿𝑟1)𝑚𝑖𝑛 = 𝐶× 𝜆0 (𝑛1 sin 𝛾1)⁄ , 

 

where the value of the constant 𝐶  in the 0 − 1  range ( 𝐶 = 0.82  for 

coherent illumination and 𝐶 = 0.61  for incoherent illumination, see 

these details in M. Born, E. Wolf , Principles of Optics, Pergamon, 1986, 

pp 418 – 424). As we have seen, the useful magnification of the 
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microscope is limited by the spatial resolution of the objective and by 

that of the observer’s eye (see Chapter 1, section 2.5), with the ocular lens 

serving only to present to the eye under a convenient angle the 

(intermediary) image formed and resolved by the objective. Abbe 

confirmed his theory in numerous ingenious experiments (also see K. 

Michel, Die Grundlagen der Theorie des Mikroskops, Stuttgart, 1950; K. 

Kranje, Simple Demonstration Experiments in the Abbe Theory of Image 

Formation, Am. J. Phys., 30, 342, 1962), whose development led his 

successors to numerous important discoveries, such as the phase-

contrast method, developed by Dutch physicist Frits Zernike 

(1888 – 1966) in the years 1932 – 1934, for which he received the Novel 

prize for physics in 1953 (F. Zernike, Beugungstheorie der 

Schneidenverfahrens und seiner verbesserten Form, der 

Phasenkontrastmethode, Physica, 1, 689, 1934; Zs. Tech. Phys., 16, 454, 

1935; Phys. Zs., 36, 848, 1935; Physica, 9, 686, 974, 1942; How I Discovered 

Phase Contrast, Science, 121, 345, 1955; for a detailed presentation of the 

phase-contrast method, see M. Françon, Le contrast de phase en optique 

et en microscopie, Paris, Revue d'Optique, 1950; A. H. Bennett, H. 

Jupnik, H. Osterberg, O. W. Richards, Phase Microscopy, New York, 

Wiley, 1952). Zernike himself described his method as a logical 

application of Abbe’s theory regarding the formation of images in the 

microscope in the case of transparent objects of irregular optical 

thickness (phase objects), such as those frequently encountered in 

biology and crystallography, that is, objects that modify the phase, but 

not the amplitude of the incident wave. The idea behind Zernike’s 

method is to place a thin transparent plate (phase plate) across the 

objective’s rear focal plane, so that the zeroth-order phase 𝑆0 is advanced 

or retarded by 𝜋 2⁄  in relation to the other diffraction orders, and, 

consequently, the invisible image of the (transparent) phase object 

becomes visible (contrasted), similar to that of an (absorbing) amplitude 

object; the phase differences of the phase object are thus transformed in 

the corresponding differences in brightness or intensity of the image. 

Since the objective’s rear focal plane is usually located within the system 

of lenses, the phase plate is "incorporated" into the objective. The 

influence of Abbe’s theory in our times is profound and fertile, his 

example of the microscope has allowed us to reach the concept of the 

spatial filter, to understand the significance of the Fourier 
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transformations in image formation, and to develop a new field within 

optics, Fourier optics and the optical processing of information. 

1879, Abbe establishes the general form of the necessary condition of 

aplanatism, or the sine condition that bears his name, later 

supplemented by F. Staeble (Münchener Sitz. - Ber., 183, 1919) and E. 

Lihotzky (Wiener Sitz. - Ber., 128, 85, 1919) with the isoplanatism 

condition. These conditions are major criteria for correction in designing 

modern optical systems. 

1879, Abbe introduces the achromatic objective (for two wavelengths) 

with homogenous immersion (oil), with a numerical aperture 𝑁𝐴 =

1.25 . However, further perfection of these objectives required the 

production of new types of glass that would allow combinations of glass 

with low refractive indices and high dispersion and glass with high 

refractive indices and low dispersion. Fortunately, in the year 1879, 

Abbe finds an ideal partner for solving the problem of new glasses in 

chemist Otto Schott, together with whom, after several demanding 

years, he would build his famous apochromatic objectives, which satisfy 

achromatization conditions for three colors and the sine condition 

(aplanatism) for two colors (Jenaische Ges. Med. u. Naturwiss., 1886). 

Abbe’s apochromatic objective (an immersion objective, composed of 

ten lenses, 𝑓 = 2𝑚𝑚 , 𝑁𝐴 = 1.4 ), supplied by the Zeiss company 

beginning with 1886, would inaugurate a new era for the finest of visual 

observations, and for microphotography, its resolving power reaching 

the theoretical diffractive limit. 

1884, the glass manufacturing company "Jenaer Glaswerke Schott und 

Genossen" is established, which in 1886 is already producing 44 types of 

optical glass, of unprecedented quality and variety. 

1889, Abbe presents this highest performance achromatic objective, with 

immersion in monobromonaphtalene (𝐴𝑁 = 1.6). 

1889, after the passing of Carl Zeiss (1888), Abbe becomes sole owner of 

the firm and establishes the Carl Zeiss Foundation for scientific research 

and social betterment (Carl Zeiss Stiftung), thus becoming a great 

pioneer in the sphere of social reform. 

 Beside these apparatuses, there are many more devices and 

precision instruments linked to Abbe’s name, such as the Abbe 

spectrometer (based on the principle of autocollimation), for quickly 

determining the refractive indices and dispersion of glass (1874), the 
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Abbe interferometer, for easily testing plane-parallel plates (1885), 

projecting oculars for microphotography (1886), an illumination system 

with mirror and lenses, known as the Abbe condenser (1886), the 

comparison microscope (1891), an improved version of Fizeau’s 

interferential dilatometer, for determining the thermal dilation 

coefficient of glass (1893), the Abbe Porro prism system for image 

inversion in terrestrial telescopes (1895), the introduction within the 

Zeiss company of new departments for binocular telemetry, for 

photographic objectives and for astronomical telescopes. Next, Abbe 

further elaborated his ideas through his close collaborators, among 

whom let us mention Carl Pulfrich (1858 – 1927), the inventor of the 

stereocomparator, the stereo locator and the photometer that bears his 

name, and P. Rudolph, who, by inventing "anastigmats" (1890), marked 

the birth of modern photographic objectives (such as the famous Tessar 

objective, devised by him in 1902). For a more detailed description of 

Abbe’s numerous achievements in optics, see M. von Rohr Ernst Abbe, 

Fischer Verlag, Jena, 1940; N. Guenther, Ernst Abbe, Schöpfer der Zeiss - 

Stiftung, Fischer Verlag, Stuttgart, 1951; F. Schomerus, Werden und 

Wessen der Carl Zeiss-Stiftung, Fischer Verlag, Stuttgart, 1955; H. 

Volkmann, Ernst Abbe and his Work, Appl. Optics, 5, 1720, 1966; Jenaer 

Rundschau (Jena Review), No. 3, 1973, an edition dedicated to the 100 

year anniversary of Abbe’s development of the theoretical and practical 

basis for modern optical microscopy. 

 Among the various methods of illuminating transparent objects, 

let us further mention A. Köhler’s condenser (Zs. f. wiss. Mikroskopie, 

10, 433, 1893; 16, 1, 1899), critical illumination (F. Zernike, Physica, 5, 794, 

1938), and the recent use of aspherical condensers with very small 

numbers 𝑓 which ensure a great density of luminous flux on the object 

(see the aspherical lenses presented in Chapter I, section 1.3). 

 The greatest contributions to the development of the fundamental 

geometrical optics of our century were made by Alvar Gullstrand 

(Allgemeine Theorie der monochromatischen Aberrationen, Acta Reg. 

Soc. Sci. Uppsala, 3, 1900; Die reele optische Abbildung, Svenska 

Vetensk. Handl., 41, 1, 1906; Tatsachen und Fiktionen in der Lehre der 

optischen Abbildung, Arch. Optik, 1, 1, 81, 1907; Das allgemeine optische 

Abbildungssystem, Svenska Vetensk. Handl., 55, 1, 1915), Thomas Smith 

(On Tracing Rays through an Optical System, Proc. Phys. Soc. London, 
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28, 502, 1915; 30, 221, 1918; 32, 252, 1920; 33, 174, 1921; 57, 286, 1945), H. 

Boegehold (Über die Entwicklung der Theorie der optischen Instrumente 

seit Abbe, Ergeb. d. exakt. Naturwiss., 8, 1929; Raumsymmetrische 

Abbildung, Z. Instrumentenk., 56, 98, 1936), M. Hertzberger 

(Strahlenoptik, Springer, Berlin, 1931; Modern Geometrical Optics, 

Interscience, New York, 1968), and G. Slusarev (Metodi di calcolo dei 

sistemi ottici, Firenze, 1943; Geometriceskaia optika, Moskva, 1946). For 

his contributions in the field of ophthalmology (cornea astigmatism and 

abnormal shapes, correction lens for after the removal of the cataract 

crystalline), Gullstrand received the Nobel prize for physiology and 

medicine (1911). By introducing the method of matrix algebra in ray 

tracing and designing optical instruments, T. Smith became one of the 

great professors of the next generation of opticians. In his first work, 

Boegehold writes a synthesis of the most important achievements in 

geometrical optics of the first thirty years of the 20th century. Herzberger 

applies in geometrical optics Hamilton’s fundamental ideas (also see his 

dispute with Synge), and develops mathematical models for optical 

systems. Slurasev undertakes an ample analysis of Seidel aberrations 

and the methods of optical calculations. Finally, in the fifth decade of the 

20th century, B. R. A. Nijboer, F. Zernike, and N. G. van Kampen 

elaborated the theory of aberration diffraction (see M. Born and E. Wolf, 

Principles of Optics, Pergamon, 1986, Chapter IX). 

 As we have seen, the new optical glass introduced by Schott (for 

example, the crown glass with barium oxide (𝐵𝑎𝑂) stabilizer, introduced 

into the composition as a nitrate ( 𝐵𝑎(𝑁𝑂3)2 ) or barium carbonate 

( 𝐵𝑎𝐶𝑂3 ), which has a high refractive index and low dispersion), 

revolutionized the correction of dioptric systems displaying chromatic 

and geometric aberrations. So it is that today’s photographic objectives 

are based on P. Rudolp’s (the Zeiss company) and H.D. Taylor’s (the 

Cooke company) anastigmats, achromatized systems with corrected 

field curvature, astigmatism, and coma, for large angular fields, further 

perfected by W. Merté, R. Richter, M. von Rohr, Das photographische 

Objectiv, Springer 1932; E. Wandersleb, Die Lichtverteilung im Grossen 

im der Brennebene des photographischen Objektivs, Akademie Verlag, 

Berlin, 1952; J. Flügge, Das photographische Objektiv, Springer, 1955. 

 Today, designing dioptric systems has become a matter of 

automation, in which matrix methods play an important role. Programs 

1911 
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that allow automated design can thus be written, for tasks ranging from 

simple ray tracing, to the design of systems of the highest performance, 

in which third, fourth, and even higher order aberrations are corrected. 

For an introduction, see D.P. Feder, Automatic Optical Design, Applied 

Optics, 2, 1209, 1963. 

 The great majority of lens and mirror systems use spherical 

surfaces, which are easily produced with the required optical precision 

(tolerance ≪  𝜆), but which pose the challenge of correcting inherent 

aberrations. However, there are also high performance optical 

instruments that contain elements of aspherical surfaces (Cartesian, 

toroidal, cylindrical), despite the difficulty with which they are 

manufactured (see T. Sakurai, K. Shishido, Study on the fabrication of 

aspherical surfaces, Appl. Optics, 2, 1181, 1963). Usually, rigorous axial 

stigmatism of centered optical systems can be achieved with an single 

aspherical surface, and aplanatism, with two. Such a system (a telescope 

aplanatic lens with a 

large angular field, 

composed of two 

aspherical mirrors) was 

calculated by Karl 

Schwarzschild (Theorie 

der Spiegeltelescope, 

Abh. Königl. Gesellsch. 

d. Wiss. zu Göttingen, 

Math. - physik. Klasse, 

4, 1905), and was most often applied in microscopy (see D. S. Gray, A 

New series of Microscope Objectives, Journ. Opt. Soc. Amer., 39, 723, 

1949; R. C. Mellors, The Reflection Microscope, Science, 112, 381, 1950). 

Although the principle of the reflection microscope (so, without 

chromatic aberrations) had been formulated by Newton and later taken 

up by Amici, since the objective of such a microscope is similar to the 

objective of the Newtonian telescope which functioned inversely, the 

idea was not materialized until Cecil Reginald Burch took up the task 

(Proc. Phys. Soc., 59, 41, 1947), starting from Schwarzschild’s analytical 

solution for the two-mirror aplanatic system. Such a microscope 

reflection objective, of high angular aperture, which reminds one of the 

Cassegrain telescope objective, is illustrated in Fig. A.7.  
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 Once adjusted for the visual spectrum, this system also allows for 

microphotography within the ultraviolet spectrum, in which spatial 

resolving power is higher. Generally, catoptric systems are also widely 

used outside the field of optics, beginning with X-ray focalization (see V. 

P. Kirkpatrik, H. H. Pattee, Jr., X- Ray Microscopy, in Encyclopedia of 

Physics, 30, 305 - 336, editor S. Flügge, Springer, 1957; H. Riesenberg, 

Über zentralabschattungsfreie, rotationssymmetrische Spiegel systeme 

mit besonderer Berücksichtigung ihrer Eignung als abbildende Optik für 

extrem weiche Röntgenstrahlen, Jenaer Jahrbuch, II, 250 - 328, 1963), to 

observatory radio telescopes in Jodrell Bank (England) and Parkes 

(Australia). In the recent history of great reflection optical telescopes 

with parabolic primary mirrors, let us mention the installation at Mont 

Wilson, U.S.A., of a 𝐷 = 152 𝑐𝑚  telescope in 1908 (with a mirror 

polished by G.W. Ritchey) and a 𝐷 = 254 𝑐𝑚 telescope in 1918, the 𝐷 =

508 𝑐𝑚 telescope (designed by G.E. Hale, with the mirror polished and 

aluminized by J.D. Strong) installed in 1947 at the Mont Palomar 

observatory, U.S.A., and the recent installation of the largest reflection 

telescope, with a 𝐷 = 600 𝑐𝑚 , at the Caucaz observatory. All these 

remarkable instruments illustrate the fertile interaction between science 

and technology. The development of the technology for aluminizing 

telescope mirrors through evaporation, by John Donovan Strong (1932), 

had a profound influence on astronomical observations. A significant 

progress was also achieved when catadrioptric telescopes with 

correcting refringent plate were built (see Chapter II, section 2.6, Fig. 61) 

by Bernhard Voldemar Schmidt (Central Zeitung f. Optik u. Mechanik, 

52, 1931; Mitt. Hamburg Sternwarte Bergedorf 36, 15, 1932; also see R. 

Schorr, Zs. f. Instrum., 56, 336, 1936; Astr. Nachr., 258, 45, 1936; Mitt. 

Hamburg Sterwarte Bergedorf, 42, 175, 1936; C. Carathéodory, 

Elementare Theorie des Spiegelteleskops von B. Schmidt, Teubner, 

Leipzig, 1940; E. H. Linfoot, Recent Advances in Optics, Chapter IV, 

Clarendon, Oxford, 1955) and Dmitri Dmitrievici Maksutov (Novîie 

Katadioptriceskie Sistemî, Dokl. Akad. Nauk S. S. S. R., 37 - 127, 1942; 

New Catadioptric Meniscus Systems, Journ. Opt. Soc. Amer., 34, 270, 

1944; also see A. Bouwers, Achievements in Optics, Elsevier, New York, 

1950). These high-performance instruments, of very large angular fields, 

in the Gregory or Cassegrain versions, allowed the astronomical 

mapping of the whole sky (see, for example, the so-called Sky Survey 
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effected on the boreal sky with the use of the Schmidt 𝐷 = 180 𝑐𝑚 mirror 

and 120 cm diameter correcting plate telescope at the observatory of 

Mount Palomar). In the field of microscopy, let us recall D.S. Gray’s 

perfecting the Burch objective, with his catadioptric version (op. cit., 

1949); he significantly increased the angular aperture by adding a frontal 

system of molten quartz and fluorene lenses (transparent in the 

ultraviolet spectrum). More recently, the use of high-speed computers 

has allowed radical improvements in the design of complex optical 

systems with aspherical lenses for the most diverse of applications 

(remote sensing, remote control, tracing), with performances nearing the 

natural limit of diffraction. Extreme precision has been achieved in 

polishing optical elements by way of ionic bombardment. The 

application of simple and multiple coating (reflective, anti-reflective 

coating) has become a common process. The technology of infrared 

materials has reached great heights. Plastic materials have been 

introduced in the production of optical elements (prisms, lenses, 

aspherical lenses, grating replicates, optical fibers). Ceramic glasses have 

been discovered, with extremely low dilatation coefficients. 

 An older idea, patented by John Logie Baird (British patent 

285738, 15th of February 1928), that predicted the possibility of 

transmitting light and images through transparent dielectric fibers, was 

taken up once more by Charles Kuen Kao (1966), so that, in 1969, the 

Corning Glass company was already producing the first glass optical 

fibers, with relatively small losses (≅ 20 𝑑𝐵/𝑘𝑚), thus inaugurating the 

era of optical fiber communications (see N.S. Kapany, Fiber Optics, 

Principles and Applications, Academic Press, New York, 1967; D. Gloge, 

Optical Fibers for Comunications, Appl. Optics, 13, 249, 1974; D. 

Marcuse, Principles of Optical Fiber Measurements, Academic Press, 

New York, 1981; A. B. Sharma, S. J. Halme, M. M. Butusov, Optical Fiber 

Systems and their Components, Springer, Ser. Opt. Sci., 24, 1981; Y. 

Suematsu, K. Iga, Introduction to Optical Fiber Communications, Wiley, 

New York, 1982; A. H. Cherin, Introduction to Optical Fibers, McGraw-

Hill, New York, 1983). The array of diameters of fibers used today for 

leading light across large distances spans between several to thousands 

of microns (a human hair has a diameter of around 50 microns). If the 

diameter of the fiber is large compared to the wavelengths, light 

propagation may be treated in geometrical optics terms, as we have done 
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in Chapter III, section 3.2, in the case of cylindrical structures. If, 

however, the diameter is comparable to the wavelength, light 

propagates through the fibers as through a waveguide of optical 

frequency (≅ 1015 𝐻𝑧), in which case rigorous electromagnetic theory 

must be applied; the same rule applies when studying light propagation 

through very thin dielectric strata. This lead to the start of new chapter 

in applied optics, termed, in short, integrated optics (S.E. Miller, 1969). 

Like hollow metallic guides in the case of microwaves, rigorous analysis 

of the luminous electromagnetic wave propagation is carried out using 

Maxwell’s equations and the corresponding limit conditions. 

Wavelength in the optical spectrum is around 104 smaller than in the 

microwave spectrum, and the advantages of optical frequencies and of 

the corresponding optical circuit and guide miniaturization are 

numerous (see M.J. Adams, An Introduction to optical Waveguides, 

Wiley, New York, 1981; R.G. Hunsperger, Integrated Optics, Theory and 

Technology, Springer, Ser. Opt. Sci., 33, 1984). 

 Here end our considerations regarding the history of geometrical 

optics, with the observation that, although this type of optics today 

seems to us a limiting case of Maxwell’s equations applied to the 

phenomena of propagation of electromagnetic fields of very small 

wavelength, designing optical instruments is still based on tracing light 

rays through the systems considered, since it seldom happens that 

diffraction goes beyond geometric aberrations. Likewise, the study of 

finer phenomena, of a wavelike nature, such as interference, diffraction 

and polarization, always entail preliminary analysis of the geometrical 

path of light beams. This is because, in order to obtain a first good 

approximation of the propagation of light, we do not require any 

hypothesis regarding its "ultimate" nature. Purely geometrical 

representations suffice, a fact which Fermat, in fending off attacks from 

the Cartesians’ side, summed up in the following words: 

 "... je ne prétends ni n'ai jamais prétendu être de la confidence 

secrète de la Nature. Elle a des voies obscures et cachées que je n'ai 

jamais entrepris de pénétrer; je lui avais seulement offert un petit secours 

de géometrie au sujet de la réfraction, si elle en ait eu besoin. " 

 ("... I do not claim, nor have I ever claimed to be among Nature’s 

confidents. Her ways are concealed and unexplained, and I have never 

attempted to decipher them; I have merely offered her some minor 
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assistance in geometry, regarding refraction, that is, if she ever needed 

assistance as such.") 

 Let this minimal program, brilliantly achieved through Fermat’s 

principle and Hamilton’s work of geometrical optics, constitute a final 

motto for the present book. 
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Appendix B 

SAMPLE OF ORIGINAL HANDWRITTEN TEXTBOOK 
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